Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Department of Polymer Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China.
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.
ACS Appl Mater Interfaces. 2018 Jan 31;10(4):4077-4085. doi: 10.1021/acsami.7b16409. Epub 2018 Jan 18.
The urgent demand of high energy density and high power density devices has triggered significant interest in high dielectric constant (high-k) flexible nanocomposites comprising dielectric polymer and high-k inorganic nanofiller. However, the large electrical mismatch between polymer and nanofiller usually leads to earlier electric failure of the nanocomposites, resulting in an undesirable decrease of electrical energy storage capability. A few studies show that the introduction of moderate-k shell onto a high-k nanofiller surface can decrease the dielectric constant mismatch, and thus, the corresponding nanocomposites can withstand high electric field. Unfortunately, the low apparent dielectric enhancement of the nanocomposites and high electrical conductivity mismatch between matrix and nanofiller still result in low energy density and low efficiency. In this study, it is demonstrated that encapsulating moderate-k nanofiller with high-k but low electrical conductivity shell is effective to significantly enhance the energy storage capability of dielectric polymer nanocomposites. Specifically, using BaTiO nanoparticles encapsulated TiO (BaTiO@TiO) core-shell nanowires as filler, the corresponding poly(vinylidene fluoride-co-hexafluoropylene) nanocomposites exhibit superior energy storage capability in comparison with the nanocomposites filled by either BaTiO or TiO nanowires. The nanocomposite film with 5 wt % BaTiO@TiO nanowires possesses an ultrahigh discharged energy density of 9.95 J cm at 500 MV m, much higher than that of commercial biaxial-oriented polypropylene (BOPP) (3.56 J cm at 600 MV m). This new strategy and corresponding results presented here provide new insights into the design of dielectric polymer nanocomposites with high electrical energy storage capability.
对兼具高储能密度和高功率密度的器件的迫切需求,激发了人们对包含介电聚合物和高介电常数(高 k)无机纳米填料的高 k 柔性纳米复合材料的极大兴趣。然而,聚合物和纳米填料之间较大的电失配通常会导致纳米复合材料更早发生电失效,从而导致电能存储能力的不理想下降。一些研究表明,在高 k 纳米填料表面引入中等介电常数的壳可以降低介电常数失配,从而相应的纳米复合材料可以承受高电场。不幸的是,纳米复合材料的表观介电增强较低,以及基体和纳米填料之间的高电导失配,仍然导致低能量密度和低效率。在本研究中,证明了用高 k 但低电导率的壳封装中等介电常数的纳米填料,对于显著提高介电聚合物纳米复合材料的储能能力是有效的。具体来说,使用 BaTiO 纳米颗粒封装的 TiO(BaTiO@TiO)核壳纳米线作为填料,相应的聚(偏二氟乙烯-共-六氟丙烯)纳米复合材料与填充 BaTiO 或 TiO 纳米线的纳米复合材料相比,表现出优异的储能能力。含有 5wt%BaTiO@TiO 纳米线的纳米复合膜在 500MV m 下具有超高的放电能量密度 9.95J/cm,远高于商业双轴取向聚丙烯(BOPP)(在 600MV m 下 3.56J/cm)。这里提出的这种新策略和相应的结果,为具有高电能存储能力的介电聚合物纳米复合材料的设计提供了新的思路。