Suppr超能文献

通过调控液晶聚合物改性剂结构来实现 BaTiO3/P(VDF-TrFE-CTFE) 纳米复合材料介电性能和能量密度的界面工程设计。

Interfacial engineering tailoring the dielectric behavior and energy density of BaTiO/P(VDF-TrFE-CTFE) nanocomposites by regulating a liquid-crystalline polymer modifier structure.

机构信息

Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.

出版信息

Dalton Trans. 2018 Sep 18;47(36):12759-12768. doi: 10.1039/c8dt02626b.

Abstract

Dielectric polymer-based nanocomposites have attracted significant attention in recent years for energy storage applications because of their potential high permittivity and breakdown strength. The coupling effect of a nanofiller/matrix interface plays a crucial role in the dielectric and electric properties of polymer-based nanocomposites. In this paper, three kinds of side-chain liquid crystalline fluoric-polymers, denoted as P-nF (n = 3, 5 or 7, which is the number of terminal fluoric groups), were grafted on the surface of BaTiO3 nanoparticles by a surface-initiated reversible-addition-fragmentation chain transfer polymerization method. The nanocomposite films were prepared via core-shell BaTiO3 nanoparticles dispersed in a poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) P(VDF-TrFE-CTFE) polymer matrix. The frequency dependent dielectric properties and energy storage capability of the polymer nanocomposites were studied. The results showed that the permittivity and energy densities of the polymer nanocomposites depended on the molecular structure of the modifier, especially the number of electron-rich fluoric groups. Firstly, all modified BaTiO3 nanoparticles were homogeneously dispersed in the polymer matrix, resulting in the polymer nanocomposites presenting a higher breakdown strength compared with the unmodified BaTiO3 nanoparticles. Secondly, the changes in the nanocomposites' permittivity exhibited diversity for three modifiers due to many influential factors. Thirdly, compared with neat P(VDF-TrFE-CTFE), the discharge energy densities of the polymer nanocomposites are all significantly improved. The highest discharge energy densities of nanocomposites with 5 vol% P-3F@BT reached 14.5 J cm-3. These findings suggest that the optimal interfacial modifier should be carefully decided by combining various properties of the nanocomposites for energy storage.

摘要

基于介电聚合物的纳米复合材料由于其潜在的高介电常数和击穿强度,近年来在储能应用中引起了极大的关注。纳米填料/基体界面的耦合效应对聚合物基纳米复合材料的介电和电性能起着至关重要的作用。在本文中,通过表面引发可逆加成-断裂链转移聚合方法,将三种侧链液晶氟聚合物,分别表示为 P-nF(n = 3、5 或 7,即末端氟基团的数量)接枝到 BaTiO3 纳米粒子的表面上。通过核壳结构的 BaTiO3 纳米粒子分散在聚(偏二氟乙烯-三氟乙烯-氯三氟乙烯)P(VDF-TrFE-CTFE)聚合物基体中制备了纳米复合膜。研究了聚合物纳米复合材料的频率相关介电性能和储能性能。结果表明,聚合物纳米复合材料的介电常数和能量密度取决于改性剂的分子结构,特别是富电子氟基团的数量。首先,所有改性的 BaTiO3 纳米粒子均均匀分散在聚合物基体中,使得聚合物纳米复合材料的击穿强度比未改性的 BaTiO3 纳米粒子更高。其次,由于有许多影响因素,三种改性剂的纳米复合材料介电常数的变化表现出多样性。第三,与纯 P(VDF-TrFE-CTFE)相比,聚合物纳米复合材料的放电能量密度均显著提高。具有 5 体积%P-3F@BT 的纳米复合材料的最大放电能量密度达到 14.5 J cm-3。这些发现表明,为了储能,应该通过结合纳米复合材料的各种性质,仔细决定最佳的界面改性剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验