Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan.
Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu 501-1193, Japan.
Toxicol Sci. 2018 May 1;163(1):13-25. doi: 10.1093/toxsci/kfx291.
Maternal hexachlorophene (HCP) exposure causes transient disruption of hippocampal neurogenesis in mouse offspring. We examined epigenetically hypermethylated and downregulated genes related to this HCP-induced disrupted neurogenesis. Mated female mice were dietary exposed to 0 or 100 ppm HCP from gestational day 6 to postnatal day (PND) 21 on weaning. The hippocampal dentate gyrus of male offspring was subjected to methyl-capture sequencing and real-time reverse transcription-polymerase chain reaction analyses on PND 21. Validation analyses on methylation identified three genes, Dlx4, Dmrt1, and Plcb4, showing promoter-region hypermethylation. Immunohistochemically, DLX4+, DMRT1+, and PLCB4+ cells in the dentate hilus co-expressed GAD67, a γ-aminobutyric acid (GABA)ergic neuron marker. HCP decreased all of three subpopulations as well as GAD67+ cells on PND 21. PLCB4+ cells also co-expressed the metabotropic glutamate receptor, GRM1. HCP also decreased transcript level of synaptic plasticity-related genes in the dentate gyrus and immunoreactive granule cells for synaptic plasticity-related ARC. On PND 77, all immunohistochemical cellular density changes were reversed, whereas the transcript expression of the synaptic plasticity-related genes fluctuated. Thus, HCP-exposed offspring transiently reduced the number of GABAergic interneurons. Among them, subpopulations expressing DLX4, DMRT1, or PLCB4 were transiently reduced in number through an epigenetic mechanism. Considering the role of the Dlx gene family in GABAergic interneuron migration and differentiation, the decreased number of DLX4+ cells may be responsible for reducing those GABAergic interneurons regulating neurogenesis. The effect on granule cell synaptic plasticity was sustained until the adult stage, and reduced GABAergic interneurons active in GRM1-PLCB4 signaling may be responsible for the suppression on weaning.
母体六氯酚(HCP)暴露会导致其子代海马神经发生的短暂破坏。我们研究了与这种 HCP 诱导的神经发生破坏相关的表观遗传过度甲基化和下调基因。从妊娠第 6 天到断奶后的第 21 天,将交配的雌性小鼠用饮食暴露于 0 或 100ppm 的 HCP。在第 21 天断奶时,对雄性后代的海马齿状回进行甲基化捕获测序和实时逆转录聚合酶链反应分析。对甲基化的验证分析确定了三个基因,Dlx4、Dmrt1 和 Plcb4,它们显示启动子区域过度甲基化。免疫组织化学显示,齿状回神经球中表达 DLX4、DMRT1 和 PLCB4 的细胞共表达 GABA 能神经元标志物 GAD67。HCP 在第 21 天减少了所有这三个亚群以及 GAD67+细胞。PLC4+细胞也共表达代谢型谷氨酸受体 GRM1。HCP 还减少了齿状回中与突触可塑性相关的基因的转录水平和与突触可塑性相关的 ARC 的免疫反应性颗粒细胞。在第 77 天,所有免疫组织化学细胞密度变化均得到逆转,而与突触可塑性相关的基因的转录表达则波动。因此,HCP 暴露的后代会短暂减少 GABA 能中间神经元的数量。其中,通过表观遗传机制,表达 DLX4、DMRT1 或 PLCB4 的亚群的数量会短暂减少。考虑到 Dlx 基因家族在 GABA 能中间神经元迁移和分化中的作用,DLX4+细胞数量的减少可能是导致调节神经发生的 GABA 能中间神经元数量减少的原因。对颗粒细胞突触可塑性的影响持续到成年期,而在 GRM1-PLCB4 信号中活跃的 GABA 能中间神经元减少可能是断奶时抑制的原因。