Department of Genetics, Harvard Medical School, Boston, MA 02115;
Department of Genetics, Harvard Medical School, Boston, MA 02115.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):619-624. doi: 10.1073/pnas.1715137115. Epub 2018 Jan 4.
Incorporation of nonstandard amino acids (nsAAs) leads to chemical diversification of proteins, which is an important tool for the investigation and engineering of biological processes. However, the aminoacyl-tRNA synthetases crucial for this process are polyspecific in regard to nsAAs and standard amino acids. Here, we develop a quality control system called "posttranslational proofreading" to more accurately and rapidly evaluate nsAA incorporation. We achieve this proofreading by hijacking a natural pathway of protein degradation known as the N-end rule, which regulates the lifespan of a protein based on its amino-terminal residue. We find that proteins containing certain desired N-terminal nsAAs have much longer half-lives compared with those proteins containing undesired amino acids. We use the posttranslational proofreading system to further evolve a tyrosyl-tRNA synthetase (TyrRS) variant and a tRNA species for improved specificity of the nsAA biphenylalanine in vitro and in vivo. Our newly evolved biphenylalanine incorporation machinery enhances the biocontainment and growth of genetically engineered strains that depend on biphenylalanine incorporation. Finally, we show that our posttranslational proofreading system can be designed for incorporation of other nsAAs by rational engineering of the ClpS protein, which mediates the N-end rule. Taken together, our posttranslational proofreading system for in vivo protein sequence verification presents an alternative paradigm for molecular recognition of amino acids and is a major advance in our ability to accurately expand the genetic code.
将非标准氨基酸(nsAA)掺入蛋白质中可导致其化学多样化,这是研究和工程生物学过程的重要工具。然而,对于这一过程至关重要的氨酰-tRNA 合成酶对于 nsAA 和标准氨基酸是多特异性的。在这里,我们开发了一种称为“翻译后校对”的质量控制系统,以更准确、更快速地评估 nsAA 掺入。我们通过劫持一种称为 N 端规则的天然蛋白质降解途径来实现这种校对,该途径根据其 N 端残基来调节蛋白质的寿命。我们发现,与含有不期望的氨基酸的蛋白质相比,含有某些所需 N 端 nsAA 的蛋白质的半衰期要长得多。我们使用翻译后校对系统进一步进化了一个酪氨酸-tRNA 合成酶(TyrRS)变体和一种 tRNA 种类,以提高其在体外和体内对 nsAA 联苯丙氨酸的特异性。我们新进化的联苯丙氨酸掺入机制增强了依赖联苯丙氨酸掺入的基因工程菌株的生物控制和生长。最后,我们表明,我们的翻译后校对系统可以通过合理设计 ClpS 蛋白(介导 N 端规则)来设计用于掺入其他 nsAA。总之,我们用于体内蛋白质序列验证的翻译后校对系统为氨基酸的分子识别提供了一种替代范式,是我们准确扩展遗传密码能力的重大进展。