Vasco Enrique, Polop Celia
Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Phys Rev Lett. 2017 Dec 22;119(25):256102. doi: 10.1103/PhysRevLett.119.256102.
The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.
在高原子迁移率条件下多晶薄膜中出现的本征压缩被归因于晶界内吸附原子的插入或捕获。这种压缩是固体中缺陷产生的应力场的结果,并导致热机械疲劳,据估计热机械疲劳是当前器件中90%机械故障的原因。我们使用基于原子力显微镜的开创性方法,直接在纳米尺度上测量多晶薄膜中残余本征应力的局部分布。我们的结果表明,与预期相反,压缩不是在晶界内产生的,而是在晶界与表面相交的间隙边缘产生的。我们描述了一个模型,其中这种压缩应力是由朝向晶界的穆林斯型表面扩散引起的,产生了一个与拉普拉斯-杨方程的机械平衡轮廓不同的动力学表面轮廓。当两个轮廓的曲率不同时,会以拉普拉斯压力的形式产生本征应力。由应力引起的斯罗洛维茨型表面扩散抵消了穆林斯型扩散,并稳定了动力学表面轮廓,从而产生了稳定的压缩状态。所提出的表面扩散之间的竞争机制将解释多晶薄膜中压缩应力的通量和时间依赖性。