University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands.
University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, The Netherlands; University of Groningen, Neuroimaging Center, Groningen, The Netherlands.
Clin Neurophysiol. 2018 Feb;129(2):419-430. doi: 10.1016/j.clinph.2017.12.003. Epub 2017 Dec 20.
Plasticity of the central nervous system likely underlies motor learning. It is however unclear, whether plasticity in cortical motor networks is motor learning stage-, activity-, or connectivity-dependent.
From electroencephalography (EEG) data, we quantified effective connectivity by the phase slope index (PSI), neuronal activity by event-related desynchronization, and sensorimotor integration by N30 during the stages of visuomotor skill acquisition, consolidation, and interlimb transfer.
Although N30 amplitudes and event-related desynchronization in parietal electrodes increased with skill acquisition, changes in PSI correlated most with motor performance in all stages of motor learning. Specifically, changes in PSI between the premotor, supplementary motor, and primary motor cortex (M1) electrodes correlated with skill acquisition, whereas changes in PSI between electrodes representing M1 and the parietal and primary sensory cortex (S1) correlated with skill consolidation. The magnitude of consolidated interlimb transfer correlated with PSI between bilateral M1s and between S1 and M1 in the non-practiced hemisphere.
Spectral and temporal EEG measures but especially PSI correlated with improvements in complex motor behavior and revealed distinct neural networks in the acquisition, consolidation, and interlimb transfer of motor skills.
A complete understanding of the neuronal mechanisms underlying motor learning can contribute to optimizing rehabilitation protocols.
中枢神经系统的可塑性可能是运动学习的基础。然而,皮质运动网络中的可塑性是否依赖于运动学习阶段、活动或连通性,目前尚不清楚。
我们从脑电图(EEG)数据中通过相位斜率指数(PSI)量化有效连通性,通过事件相关去同步化量化神经元活动,通过 N30 量化感觉运动整合,分别在视觉运动技能获得、巩固和肢体间转移的阶段进行测量。
尽管顶叶电极的 N30 振幅和事件相关去同步化随技能获得而增加,但 PSI 的变化与运动学习的所有阶段的运动表现最相关。具体来说,运动前皮质、辅助运动皮质和初级运动皮质(M1)电极之间 PSI 的变化与技能获得相关,而代表 M1 与顶叶和初级感觉皮质(S1)之间 PSI 的变化与技能巩固相关。巩固的肢体间转移的幅度与双侧 M1 之间以及非练习半球的 S1 和 M1 之间的 PSI 相关。
频谱和时间 EEG 测量值,特别是 PSI,与复杂运动行为的改善相关,并揭示了运动技能获得、巩固和肢体间转移的不同神经网络。
对运动学习背后的神经元机制的全面理解有助于优化康复方案。