Suppr超能文献

一种基于循环的神经架构,用于对结构化行为进行编码和解码。

A loop-based neural architecture for structured behavior encoding and decoding.

机构信息

Centre for Research on Brain, Language and Music, 3640 de la Montagne, Montréal, Québec H3G 2A8, Canada.

Département d'informatique, Université du Québec à Montréal, Case postale 8888, succursale Centre-ville, Montréal Québec H3C 3P8, Canada.

出版信息

Neural Netw. 2018 Feb;98:318-336. doi: 10.1016/j.neunet.2017.11.019. Epub 2017 Dec 8.

Abstract

We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research.

摘要

我们提出了一种新型的人工神经网络,它在哺乳动物大脑的解剖和动力学方面具有通用性。它的主要新颖之处在于其拓扑结构,它是由一系列相互作用的基本图案组成的,这些图案呈循环形状。这些循环有多种类型,可以实现门控、抑制或执行控制、任务元素编码等功能。每个循环都有两组神经元和一个控制区域,通过非递归投射连接在一起。两组神经元完成循环大部分的计算,而控制单元指定循环所执行计算的时间和条件。通过将许多这样的循环功能连接起来,可以得到一个可以执行复杂认知计算的神经网络。为了展示这样一个系统所提供的潜力,我们提出了两个神经网络模拟。第一个模拟说明了实现简单门控机制的单个循环的结构和动力学。第二个模拟展示了如何将四个循环串联连接起来,可以产生足够的神经活动模式来通过简化的延迟反应任务。我们还表明,这个网络再现了猴子在执行类似任务时大脑各个区域收集的电生理测量结果。我们还展示了这种神经网络与递归或长短期记忆网络模型之间的联系,并提出了为未来人工智能研究推广它们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验