Suppr超能文献

瘦素通过葡萄糖-脂肪酸循环来维持饥饿状态下的血糖稳态。

Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose Homeostasis in Starvation.

机构信息

Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.

Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.

出版信息

Cell. 2018 Jan 11;172(1-2):234-248.e17. doi: 10.1016/j.cell.2017.12.001. Epub 2018 Jan 4.

Abstract

The transition from the fed to the fasted state necessitates a shift from carbohydrate to fat metabolism that is thought to be mostly orchestrated by reductions in plasma insulin concentrations. Here, we show in awake rats that insulinopenia per se does not cause this transition but that both hypoleptinemia and insulinopenia are necessary. Furthermore, we show that hypoleptinemia mediates a glucose-fatty acid cycle through activation of the hypothalamic-pituitary-adrenal axis, resulting in increased white adipose tissue (WAT) lipolysis rates and increased hepatic acetyl-coenzyme A (CoA) content, which are essential to maintain gluconeogenesis during starvation. We also show that in prolonged starvation, substrate limitation due to reduced rates of glucose-alanine cycling lowers rates of hepatic mitochondrial anaplerosis, oxidation, and gluconeogenesis. Taken together, these data identify a leptin-mediated glucose-fatty acid cycle that integrates responses of the muscle, WAT, and liver to promote a shift from carbohydrate to fat oxidation and maintain glucose homeostasis during starvation.

摘要

从进食状态向禁食状态的转变需要从碳水化合物代谢向脂肪代谢转变,人们认为这种转变主要是通过降低血浆胰岛素浓度来协调的。在这里,我们在清醒的大鼠中表明,胰岛素缺乏本身并不会导致这种转变,而是瘦素缺乏和胰岛素缺乏都是必要的。此外,我们还表明,瘦素缺乏通过激活下丘脑-垂体-肾上腺轴介导葡萄糖-脂肪酸循环,导致白色脂肪组织(WAT)脂肪分解率增加和肝乙酰辅酶 A(CoA)含量增加,这对于维持饥饿期间的糖异生是必不可少的。我们还表明,在长时间饥饿中,由于葡萄糖-丙氨酸循环率降低导致的底物限制降低了肝线粒体补充、氧化和糖异生的速率。总之,这些数据确定了一种瘦素介导的葡萄糖-脂肪酸循环,它整合了肌肉、WAT 和肝脏的反应,以促进从碳水化合物向脂肪氧化的转变,并在饥饿期间维持葡萄糖稳态。

相似文献

1
Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose Homeostasis in Starvation.
Cell. 2018 Jan 11;172(1-2):234-248.e17. doi: 10.1016/j.cell.2017.12.001. Epub 2018 Jan 4.
2
The Role of Leptin in Maintaining Plasma Glucose During Starvation.
Postdoc J. 2018 Mar;6(3):3-19. doi: 10.14304/surya.jpr.v6n3.2.
3
Leptin revisited: The role of leptin in starvation.
Mol Cell Oncol. 2018 May 29;5(5):e1435185. doi: 10.1080/23723556.2018.1435185. eCollection 2018.
5
Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis.
Nat Med. 2014 Jul;20(7):759-63. doi: 10.1038/nm.3579. Epub 2014 Jun 15.
6
Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice.
Metabolism. 2013 Nov;62(11):1651-61. doi: 10.1016/j.metabol.2013.06.012. Epub 2013 Aug 5.
7
Recurrent hypoglycemia increases hepatic gluconeogenesis without affecting glycogen metabolism or systemic lipolysis in rat.
Metabolism. 2022 Nov;136:155310. doi: 10.1016/j.metabol.2022.155310. Epub 2022 Sep 3.
9
Time-dependent effects of starvation on serum, pituitary and hypothalamic leptin levels in rats.
Physiol Res. 2011;60(Suppl 1):S165-70. doi: 10.33549/physiolres.932174. Epub 2011 Jul 19.
10
Unexpected role for IGF-1 in starvation: Maintenance of blood glucose.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2208855119. doi: 10.1073/pnas.2208855119. Epub 2022 Aug 1.

引用本文的文献

2
4
Hepatic glycogen directly regulates gluconeogenesis through an AMPK/CRTC2 axis in mice.
J Clin Invest. 2025 Jun 2;135(11). doi: 10.1172/JCI188363.
5
Proteomic and metabolomic insights into oxidative stress response activation in mouse embryos generated by fertilization.
Hum Reprod Open. 2025 Apr 28;2025(2):hoaf022. doi: 10.1093/hropen/hoaf022. eCollection 2025.
6
Transcriptomic and epigenomic signatures of liver metabolism and insulin sensitivity in aging mice.
Mech Ageing Dev. 2025 Jun;225:112068. doi: 10.1016/j.mad.2025.112068. Epub 2025 May 3.
7
Vitamin D receptor signalling regulates the diet-driven metabolic shift during weaning.
Mol Metab. 2025 Jul;97:102158. doi: 10.1016/j.molmet.2025.102158. Epub 2025 Apr 26.
8
Quantification of Multi-Organ 11β-Hydroxysteroid Dehydrogenase Type 1 Enzyme Levels in a Zucker Fatty Rat Model: A PET Imaging Study.
Mol Imaging. 2024 Dec 18;23:15353508241301584. doi: 10.1177/15353508241301584. eCollection 2024 Jan-Dec.
10
Opioid growth factor receptor promotes adipose tissue thermogenesis via enhancing lipid oxidation.
Life Metab. 2023 May 4;2(3):load018. doi: 10.1093/lifemeta/load018. eCollection 2023 Jun.

本文引用的文献

2
Weight Loss and Appetite Control in Women.
Curr Obes Rep. 2017 Sep;6(3):334-351. doi: 10.1007/s13679-017-0273-8.
3
Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis.
J Clin Invest. 2017 Feb 1;127(2):657-669. doi: 10.1172/JCI88477. Epub 2017 Jan 23.
4
A Non-invasive Method to Assess Hepatic Acetyl-CoA In Vivo.
Cell Metab. 2017 Mar 7;25(3):749-756. doi: 10.1016/j.cmet.2016.12.017. Epub 2017 Jan 19.
5
The endocrine manifestations of anorexia nervosa: mechanisms and management.
Nat Rev Endocrinol. 2017 Mar;13(3):174-186. doi: 10.1038/nrendo.2016.175. Epub 2016 Nov 4.
6
Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance.
J Clin Invest. 2016 Nov 1;126(11):4361-4371. doi: 10.1172/JCI86013. Epub 2016 Oct 17.
8
Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis.
Diabetologia. 2016 May;59(5):933-7. doi: 10.1007/s00125-016-3909-4. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验