Bonakdar M, Graybill P M, Davalos R V
Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
RSC Adv. 2017;7(68):42811-42818. doi: 10.1039/C7RA07603G. Epub 2017 Sep 5.
Pulsed electric fields interact with the blood-brain barrier (BBB) and have been shown to increase the BBB permeability under some pulsing regimes. Pulsed electric fields may enhance drug delivery to the brain by disrupting the integrity of the BBB and allowing otherwise impermeable drugs to reach target areas. Microfluidic, in vitro models offer an alternative platform for exploring the impact of pulsed electric fields on the BBB because they create physiologically relevant microenvironments and eliminate the confounding variables of animal studies. We developed a microfluidic platform for real-time measurement of BBB permeability pre- and post-treatment with pulsed electric fields. Permeability is measured optically by the diffusion of fluorescent tracers across a monolayer of human cerebral microcapillary endothelial cells (hCMECs) cultured on a permeable membrane. We found that this device is able to capture real-time permeability of hCMEC monolayers for both reversible and irreversible electroporation pulsing regimes. Furthermore, preliminary testing of deep brain stimulation pulsing regimes reveals possible impacts on BBB integrity. This device will enable future studies of pulsed electric field regimes for improved understanding of BBB permeabilization.
脉冲电场与血脑屏障(BBB)相互作用,并且在某些脉冲模式下已显示出会增加血脑屏障的通透性。脉冲电场可能通过破坏血脑屏障的完整性,使原本无法透过的药物到达靶区域,从而增强药物向脑部的递送。微流控体外模型为探索脉冲电场对血脑屏障的影响提供了一个替代平台,因为它们能创建与生理相关的微环境,并消除动物研究中的混杂变量。我们开发了一个微流控平台,用于实时测量脉冲电场处理前后血脑屏障的通透性。通透性通过荧光示踪剂在培养于可渗透膜上的人脑微血管内皮细胞(hCMECs)单层中的扩散进行光学测量。我们发现该装置能够捕获hCMEC单层在可逆和不可逆电穿孔脉冲模式下的实时通透性。此外,对深部脑刺激脉冲模式的初步测试揭示了其对血脑屏障完整性可能产生的影响。该装置将有助于未来对脉冲电场模式的研究,以更好地理解血脑屏障的通透作用。