文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性药物气雾剂在人体上呼吸道和中央呼吸系统靶向递送的数值模拟:一项验证研究。

Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: a validation study.

作者信息

Kenjereš Saša, Tjin Jimmy Leroy

机构信息

Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, and J. M. Burgerscentrum for Fluid Mechanics, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.

出版信息

R Soc Open Sci. 2017 Dec 6;4(12):170873. doi: 10.1098/rsos.170873. eCollection 2017 Dec.


DOI:10.1098/rsos.170873
PMID:29308230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5749997/
Abstract

In the present study, we investigate the concept of the targeted delivery of pharmaceutical drug aerosols in an anatomically realistic geometry of the human upper and central respiratory system. The geometry considered extends from the mouth inlet to the eighth generation of the bronchial bifurcations and is identical to the phantom model used in the experimental studies of Banko (2015 , 1-12 (doi:10.1007/s00348-015-1966-y)). In our computer simulations, we combine the transitional Reynolds-averaged Navier-Stokes (RANS) and the wall-resolved large eddy simulation (LES) methods for the air phase with the Lagrangian approach for the particulate (aerosol) phase. We validated simulations against recently obtained magnetic resonance velocimetry measurements of Banko (2015 , 1-12. (doi:10.1007/s00348-015-1966-y)) that provide a full three-dimensional mean velocity field for steady inspiratory conditions. Both approaches produced good agreement with experiments, and the transitional RANS approach is selected for the multiphase simulations of aerosols transport, because of significantly lower computational costs. The local and total deposition efficiency are calculated for different classes of pharmaceutical particles (in the 0.1 μm≤≤10 μm range) without and with a paramagnetic core (the shell-core particles). For the latter, an external magnetic field is imposed. The source of the imposed magnetic field was placed in the proximity of the first bronchial bifurcation. We demonstrated that both total and local depositions of aerosols at targeted locations can be significantly increased by an applied magnetization force. This finding confirms the possible potential for further advancement of the magnetic drug targeting technique for more efficient treatments for respiratory diseases.

摘要

在本研究中,我们研究了在人体上呼吸道和中央呼吸系统的解剖学真实几何结构中药物气雾剂靶向递送的概念。所考虑的几何结构从口腔入口延伸至支气管分支的第八代,与Banko(2015年,1 - 12页(doi:10.1007/s00348-015-1966-y))实验研究中使用的体模模型相同。在我们的计算机模拟中,我们将用于气相的过渡雷诺平均纳维 - 斯托克斯(RANS)方法和壁面解析大涡模拟(LES)方法与用于颗粒(气溶胶)相的拉格朗日方法相结合。我们根据Banko(2015年,1 - 12页。(doi:10.1007/s00348-015-1966-y))最近获得的磁共振测速测量结果对模拟进行了验证,该测量结果提供了稳定吸气条件下的完整三维平均速度场。两种方法都与实验结果吻合良好,并且由于计算成本显著较低,因此选择过渡RANS方法进行气溶胶传输的多相模拟。计算了不同类别的药物颗粒(在0.1μm≤粒径≤10μm范围内)在无和顺磁核心(壳 - 核颗粒)情况下的局部和总沉积效率。对于后者,施加了外部磁场。施加磁场的源放置在第一支气管分支附近。我们证明,通过施加磁化力,可以显著提高气溶胶在目标位置的总沉积和局部沉积。这一发现证实了磁性药物靶向技术在进一步推进以实现更有效治疗呼吸系统疾病方面的潜在可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/1f22dd87fb31/rsos170873-g20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/b28e897c91eb/rsos170873-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/2bbcda00d96f/rsos170873-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/54c2f3a9214c/rsos170873-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/78aa49f084b2/rsos170873-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/fe5b04a473a5/rsos170873-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/8517ffeea886/rsos170873-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/c5454af6c669/rsos170873-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/4331d11e542e/rsos170873-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/497d8579e208/rsos170873-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/f0214b5a58ef/rsos170873-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/b3c51525db74/rsos170873-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/d46f7eb0d73c/rsos170873-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/bcf7673fac0f/rsos170873-g13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/de169ea255f5/rsos170873-g14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/b2081508622f/rsos170873-g15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/58cf8276ebc8/rsos170873-g16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/9657dafb304a/rsos170873-g17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/738e4579a3ee/rsos170873-g18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/010849576609/rsos170873-g19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/1f22dd87fb31/rsos170873-g20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/b28e897c91eb/rsos170873-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/2bbcda00d96f/rsos170873-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/54c2f3a9214c/rsos170873-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/78aa49f084b2/rsos170873-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/fe5b04a473a5/rsos170873-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/8517ffeea886/rsos170873-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/c5454af6c669/rsos170873-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/4331d11e542e/rsos170873-g8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/497d8579e208/rsos170873-g9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/f0214b5a58ef/rsos170873-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/b3c51525db74/rsos170873-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/d46f7eb0d73c/rsos170873-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/bcf7673fac0f/rsos170873-g13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/de169ea255f5/rsos170873-g14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/b2081508622f/rsos170873-g15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/58cf8276ebc8/rsos170873-g16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/9657dafb304a/rsos170873-g17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/738e4579a3ee/rsos170873-g18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/010849576609/rsos170873-g19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d67/5749997/1f22dd87fb31/rsos170873-g20.jpg

相似文献

[1]
Numerical simulations of targeted delivery of magnetic drug aerosols in the human upper and central respiratory system: a validation study.

R Soc Open Sci. 2017-12-6

[2]
Analysis of flow field and turbulence predictions in a lung model applying RANS and implications for particle deposition.

Eur J Pharm Sci. 2021-11-1

[3]
Inspiratory and expiratory aerosol deposition in the upper airway.

Inhal Toxicol. 2011-2

[4]
Improving prediction of aerosol deposition in an idealized mouth using large-Eddy simulation.

J Aerosol Med. 2006

[5]
Comparison of LES of steady transitional flow in an idealized stenosed axisymmetric artery model with a RANS transitional model.

J Biomech Eng. 2011-5

[6]
Validation of computational fluid dynamics methodology used for human upper airway flow simulations.

J Biomech. 2009-7-22

[7]
Development and application of an aerosol screening model for size-resolved urban aerosols.

Res Rep Health Eff Inst. 2014-6

[8]
High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.

J Aerosol Med Pulm Drug Deliv. 2018-12-15

[9]
Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.

J Biomech. 2008-7-19

[10]
Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.

Comput Biol Med. 2017-5-1

引用本文的文献

[1]
Achieving Targeted Delivery of Chemotherapeutic Particles to Small Airway Tumors via Pulmonary Route Using Endotracheal Catheters: A CFPD Study.

Pharmaceuticals (Basel). 2023-1-22

[2]
In vitro-in silico correlation of three-dimensional turbulent flows in an idealized mouth-throat model.

PLoS Comput Biol. 2023-3

[3]
Mathematical Optimisation of Magnetic Nanoparticle Diffusion in the Brain White Matter.

Int J Mol Sci. 2023-1-28

[4]
In Silico Study to Enhance Delivery Efficiency of Charged Nanoscale Nasal Spray Aerosols to the Olfactory Region Using External Magnetic Fields.

Bioengineering (Basel). 2022-1-16

[5]
Focused targeting of inhaled magnetic aerosols in reconstructed in vitro airway models.

J Biomech. 2021-3-30

[6]
Magnetic particle targeting for diagnosis and therapy of lung cancers.

J Control Release. 2020-12-10

[7]
Use of computational fluid dynamics deposition modeling in respiratory drug delivery.

Expert Opin Drug Deliv. 2018-12-10

本文引用的文献

[1]
Early life exposure to ambient air pollution and childhood asthma in China.

Environ Res. 2015-11

[2]
Targeted drug delivery to the brain using magnetic nanoparticles.

Ther Deliv. 2015

[3]
Dynamics of airflow in a short inhalation.

J R Soc Interface. 2015-1-6

[4]
Open challenges in magnetic drug targeting.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015

[5]
Inhalation treatment of lung cancer: the influence of composition, size and shape of nanocarriers on their lung accumulation and retention.

Cancer Biol Med. 2014-3

[6]
Nanotechnology approaches for personalized treatment of multidrug resistant cancers.

Adv Drug Deliv Rev. 2013-10-10

[7]
Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA.

J Control Release. 2013-5-3

[8]
Imaging of Her2-targeted magnetic nanoparticles for breast cancer detection: comparison of SQUID-detected magnetic relaxometry and MRI.

Contrast Media Mol Imaging. 2012

[9]
Respiratory fluid mechanics.

Phys Fluids (1994). 2011-2

[10]
Computational simulations of magnetic particle capture in arterial flows.

Ann Biomed Eng. 2009-9-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索