Kenjereš Saša, Tjin Jimmy Leroy
Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied Sciences, and J. M. Burgerscentrum for Fluid Mechanics, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
R Soc Open Sci. 2017 Dec 6;4(12):170873. doi: 10.1098/rsos.170873. eCollection 2017 Dec.
In the present study, we investigate the concept of the targeted delivery of pharmaceutical drug aerosols in an anatomically realistic geometry of the human upper and central respiratory system. The geometry considered extends from the mouth inlet to the eighth generation of the bronchial bifurcations and is identical to the phantom model used in the experimental studies of Banko (2015 , 1-12 (doi:10.1007/s00348-015-1966-y)). In our computer simulations, we combine the transitional Reynolds-averaged Navier-Stokes (RANS) and the wall-resolved large eddy simulation (LES) methods for the air phase with the Lagrangian approach for the particulate (aerosol) phase. We validated simulations against recently obtained magnetic resonance velocimetry measurements of Banko (2015 , 1-12. (doi:10.1007/s00348-015-1966-y)) that provide a full three-dimensional mean velocity field for steady inspiratory conditions. Both approaches produced good agreement with experiments, and the transitional RANS approach is selected for the multiphase simulations of aerosols transport, because of significantly lower computational costs. The local and total deposition efficiency are calculated for different classes of pharmaceutical particles (in the 0.1 μm≤≤10 μm range) without and with a paramagnetic core (the shell-core particles). For the latter, an external magnetic field is imposed. The source of the imposed magnetic field was placed in the proximity of the first bronchial bifurcation. We demonstrated that both total and local depositions of aerosols at targeted locations can be significantly increased by an applied magnetization force. This finding confirms the possible potential for further advancement of the magnetic drug targeting technique for more efficient treatments for respiratory diseases.
在本研究中,我们研究了在人体上呼吸道和中央呼吸系统的解剖学真实几何结构中药物气雾剂靶向递送的概念。所考虑的几何结构从口腔入口延伸至支气管分支的第八代,与Banko(2015年,1 - 12页(doi:10.1007/s00348-015-1966-y))实验研究中使用的体模模型相同。在我们的计算机模拟中,我们将用于气相的过渡雷诺平均纳维 - 斯托克斯(RANS)方法和壁面解析大涡模拟(LES)方法与用于颗粒(气溶胶)相的拉格朗日方法相结合。我们根据Banko(2015年,1 - 12页。(doi:10.1007/s00348-015-1966-y))最近获得的磁共振测速测量结果对模拟进行了验证,该测量结果提供了稳定吸气条件下的完整三维平均速度场。两种方法都与实验结果吻合良好,并且由于计算成本显著较低,因此选择过渡RANS方法进行气溶胶传输的多相模拟。计算了不同类别的药物颗粒(在0.1μm≤粒径≤10μm范围内)在无和顺磁核心(壳 - 核颗粒)情况下的局部和总沉积效率。对于后者,施加了外部磁场。施加磁场的源放置在第一支气管分支附近。我们证明,通过施加磁化力,可以显著提高气溶胶在目标位置的总沉积和局部沉积。这一发现证实了磁性药物靶向技术在进一步推进以实现更有效治疗呼吸系统疾病方面的潜在可能性。
Inhal Toxicol. 2011-2
Res Rep Health Eff Inst. 2014-6
J Aerosol Med Pulm Drug Deliv. 2018-12-15
Int J Mol Sci. 2023-1-28
J Control Release. 2020-12-10
Expert Opin Drug Deliv. 2018-12-10
Environ Res. 2015-11
J R Soc Interface. 2015-1-6
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015
Adv Drug Deliv Rev. 2013-10-10
Phys Fluids (1994). 2011-2
Ann Biomed Eng. 2009-9-16