Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.
School of Engineering, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK.
Int J Mol Sci. 2023 Jan 28;24(3):2534. doi: 10.3390/ijms24032534.
Magnetic nanoparticles (MNPs) are a promising drug delivery system to treat brain diseases, as the particle transport trajectory can be manipulated by an external magnetic field. However, due to the complex microstructure of brain tissues, particularly the arrangement of nerve fibres in the white matter (WM), how to achieve desired drug distribution patterns, e.g., uniform distribution, is largely unknown. In this study, by adopting a mathematical model capable of capturing the diffusion trajectories of MNPs, we conducted a pilot study to investigate the effects of key parameters in the MNP delivery on the particle diffusion behaviours in the brain WM microstructures. The results show that (i) a uniform distribution of MNPs can be achieved in anisotropic tissues by adjusting the particle size and magnetic field; (ii) particle size plays a key role in determining MNPs' diffusion behaviours. The magnitude of MNP equivalent diffusivity is reversely correlated to the particle size. The MNPs with a dimension greater than 90 nm cannot reach a uniform distribution in the brain WM even in an external magnitude field; (iii) axon tortuosity may lead to transversely anisotropic MNP transport in the brain WM; however, this effect can be mitigated by applying an external magnetic field perpendicular to the local axon track. This study not only advances understanding to answer the question of how to optimise MNP delivery, but also demonstrates the potential of mathematical modelling to help achieve desired drug distributions in biological tissues with a complex microstructure.
磁性纳米颗粒 (MNPs) 是一种有前途的药物输送系统,可用于治疗脑部疾病,因为可以通过外部磁场操纵颗粒的运输轨迹。然而,由于脑组织的复杂微观结构,特别是白质 (WM) 中神经纤维的排列方式,如何实现所需的药物分布模式,例如均匀分布,在很大程度上是未知的。在这项研究中,我们采用了一种能够捕捉 MNPs 扩散轨迹的数学模型,进行了一项初步研究,以调查 MNP 输送中的关键参数对大脑 WM 微观结构中颗粒扩散行为的影响。结果表明:(i) 通过调整颗粒大小和磁场,可以在各向异性组织中实现 MNPs 的均匀分布;(ii) 颗粒大小在决定 MNPs 扩散行为方面起着关键作用。MNP 等效扩散率的大小与颗粒尺寸呈负相关。尺寸大于 90nm 的 MNPs 即使在外部磁场中也无法在大脑 WM 中达到均匀分布;(iii) 轴突曲折度可能导致大脑 WM 中 MNPs 的横向各向异性运输;然而,通过施加垂直于局部轴突轨迹的外部磁场可以减轻这种影响。这项研究不仅推进了对如何优化 MNP 输送的理解,还展示了数学建模在帮助实现具有复杂微观结构的生物组织中所需药物分布方面的潜力。