Suppr超能文献

用于基于基因的关联分析的加权功能线性回归模型。

Weighted functional linear regression models for gene-based association analysis.

作者信息

Belonogova Nadezhda M, Svishcheva Gulnara R, Wilson James F, Campbell Harry, Axenovich Tatiana I

机构信息

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.

Vavilov Institute of General Genetics, the Russian Academy of Sciences, Moscow, Russia.

出版信息

PLoS One. 2018 Jan 8;13(1):e0190486. doi: 10.1371/journal.pone.0190486. eCollection 2018.

Abstract

Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with P < 0.1 in at least one analysis had lower P values with weighted models. Moreover, we found an association between diastolic blood pressure and the VMP1 gene (P = 8.18×10-6), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had P = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at https://cran.r-project.org/web/packages/FREGAT/index.html.

摘要

功能线性回归模型在复杂性状的基因关联分析中得到了有效应用。这些模型整合了个体遗传变异的信息,考虑到它们的位置,并减少噪声和/或观测误差的影响。为了提高将几个不同信息成分组合起来的方法的效能,引入了权重,以便赋予信息更多的成分优势。等位基因特异性权重已被引入到基于压缩和核方法的基因关联分析中。在这里,我们首次将权重引入到适用于独立样本和家系样本的功能线性回归模型中。使用基于GAW17基因型模拟的数据以及通过贝塔分布由等位基因频率定义的权重,我们证明了I型错误与声明值相对应,并且增加因果变异的权重可以提高功能线性模型的效能。我们将新方法应用于来自ORCADES样本的血压真实数据。在至少一项分析中P < 0.1的六个已知基因中,有五个基因在加权模型下的P值更低。此外,当我们使用加权功能模型时,发现舒张压与VMP1基因之间存在关联(P = 8.18×10 - 6)。对于该基因,未加权的功能模型和加权的基于核的模型的P值分别为0.004和0.006。新方法已在程序包FREGAT中实现,该程序包可在https://cran.r-project.org/web/packages/FREGAT/index.html免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59e8/5757938/999983575e1a/pone.0190486.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验