Suppr超能文献

一项基于全国注册的 MammaPrint 基因组风险分类器在浸润性乳腺癌中的队列研究。

A nationwide registry-based cohort study of the MammaPrint genomic risk classifier in invasive breast cancer.

机构信息

Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

出版信息

Breast. 2018 Apr;38:125-131. doi: 10.1016/j.breast.2017.12.015. Epub 2018 Jan 6.

Abstract

AIM

To evaluate the use of the MammaPrint assay, a 70-gene risk signature for early breast cancers, and to correlate genomic risk stratification with individual clinicopathological parameters and clinical risk as assessed by Adjuvant! Online.

METHODS

A Dutch Pathology Registry (PALGA)-based cohort study consisting of 1916 patients for which 1946 MammaPrint assay results were synoptically reported from 2013 to 2016. We could retrospectively assess clinical risk for 1146 tumors (58.9%) using Adjuvant! Online (version 8.0 with HER2 status) and for 1155 tumors (59.4%) using PREDICT (version 2.0).

RESULTS

Adjuvant! Online classified 718 tumors (62.7%) as clinical low risk and 428 tumors (37.3%) as clinical high risk. MammaPrint classified 1206 tumors (62.0%) as genomic low risk and 740 tumors (38.0%) as genomic high risk. Genomic risk stratification was significantly associated with histological subtype and grade (P < .001), hormonal receptor status (P < .001), presence of lymphovascular invasion (P = .001) and nodal status (P = .002), whereas no association was found with tumor size (P = .541). MammaPrint classified 52.6% of clinical high risk tumors (N = 428) as genomic low risk. This percentage was highest (67.3%) in clinical high risk ER-positive/HER2-negative grade 1-2 tumors (N = 282). Correlation between predicted overall survival benefit from adjuvant chemotherapy (PREDICT V2.0) and genomic risk distribution was almost linear.

CONCLUSIONS

This study showed that MammaPrint classified 52.6% of clinical high risk tumors as genomic low risk. In the Netherlands, 62.7% of the MammaPrint assays from 2013 to 2016 were performed on clinical low risk tumors, although recent International Guidelines recommend its use in clinical high and intermediate risk tumors.

摘要

目的

评估 MammaPrint 检测(一种用于早期乳腺癌的 70 基因风险特征)的应用,并将基因组风险分层与个体临床病理参数和 Adjuvant! Online 评估的临床风险相关联。

方法

这是一项基于荷兰病理学注册中心(PALGA)的队列研究,纳入了 1916 例患者,其中 2013 年至 2016 年共汇总报告了 1946 例 MammaPrint 检测结果。我们可以回顾性地使用 Adjuvant! Online(版本 8.0 并包含 HER2 状态)评估 1146 例肿瘤(58.9%)的临床风险,使用 PREDICT(版本 2.0)评估 1155 例肿瘤(59.4%)的临床风险。

结果

Adjuvant! Online 将 718 例肿瘤(62.7%)分类为临床低风险,428 例肿瘤(37.3%)分类为临床高风险。MammaPrint 将 1206 例肿瘤(62.0%)分类为基因组低风险,740 例肿瘤(38.0%)分类为基因组高风险。基因组风险分层与组织学亚型和分级显著相关(P<0.001)、激素受体状态(P<0.001)、存在淋巴血管侵犯(P=0.001)和淋巴结状态(P=0.002),而与肿瘤大小无关(P=0.541)。MammaPrint 将 52.6%(N=428)的临床高风险肿瘤(N=428)分类为基因组低风险。在临床高风险、ER 阳性/HER2 阴性、1-2 级肿瘤(N=282)中,这一比例最高(67.3%)。预测的辅助化疗总生存获益(PREDICT V2.0)与基因组风险分布之间的相关性几乎呈线性关系。

结论

本研究表明,MammaPrint 将 52.6%的临床高风险肿瘤分类为基因组低风险。在荷兰,2013 年至 2016 年进行的 MammaPrint 检测中,62.7%的检测针对临床低风险肿瘤,尽管最近的国际指南建议将其用于临床高风险和中风险肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验