Alexandrov Dmitri V, Galenko Peter K, Toropova Lyubov V
Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modelling, Ural Federal University, Ekaterinburg, 620000, Russian Federation
Physikalisch-Astronomische Fakultät, Friedrich-Schiller- Universität Jena, 07743 Jena, Germany.
Philos Trans A Math Phys Eng Sci. 2018 Feb 28;376(2113). doi: 10.1098/rsta.2017.0215.
Motivated by important applications in materials science and geophysics, we consider the steady-state growth of anisotropic needle-like dendrites in undercooled binary mixtures with a forced convective flow. We analyse the stable mode of dendritic evolution in the case of small anisotropies of growth kinetics and surface energy for arbitrary Péclet numbers and -fold symmetry of dendritic crystals. On the basis of solvability and stability theories, we formulate a selection criterion giving a stable combination between dendrite tip diameter and tip velocity. A set of nonlinear equations consisting of the solvability criterion and undercooling balance is solved analytically for the tip velocity and tip diameter of dendrites with -fold symmetry in the absence of convective flow. The case of convective heat and mass transfer mechanisms in a binary mixture occurring as a result of intensive flows in the liquid phase is detailed. A selection criterion that describes such solidification conditions is derived. The theory under consideration comprises previously considered theoretical approaches and results as limiting cases. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.
受材料科学和地球物理学中重要应用的推动,我们考虑在具有强制对流的过冷二元混合物中各向异性针状枝晶的稳态生长。对于任意佩克莱数和枝晶晶体的 - 重对称性,我们分析了生长动力学和表面能的小各向异性情况下枝晶演化的稳定模式。基于可解性和稳定性理论,我们制定了一个选择标准,给出枝晶尖端直径和尖端速度之间的稳定组合。对于无对流流动时具有 - 重对称性的枝晶,解析求解了由可解性标准和过冷平衡组成的一组非线性方程,以得到枝晶的尖端速度和尖端直径。详细讨论了由于液相中的强烈流动而在二元混合物中发生的对流热质传递机制的情况。推导了描述这种凝固条件的选择标准。所考虑的理论包括以前作为极限情况考虑的理论方法和结果。本文是“从原子界面到枝晶图案”主题问题的一部分。本文是“从原子界面到枝晶图案”主题问题的一部分。