Subhedar Amol, Galenko Peter K, Varnik Fathollah
Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany.
Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität-Jena, 07743 Jena, Germany.
Philos Trans A Math Phys Eng Sci. 2020 May 15;378(2171):20190540. doi: 10.1098/rsta.2019.0540. Epub 2020 Apr 13.
The thin interface limit of the phase-field model is extended to include transport via melt convection. A double-sided model (equal diffusivity in liquid and solid phases) is considered for the present analysis. For the coupling between phase-field and Navier-Stokes equations, two commonly used schemes are investigated using a matched asymptotic analysis: (i) variable viscosity and (ii) drag force model. While for the variable viscosity model, the existence of a thin interface limit can be shown up to the second order in the expansion parameter, difficulties arise in satisfying no-slip boundary condition at this order for the drag force model. Nevertheless, detailed numerical simulations in two dimensions show practically no difference in dendritic growth profiles in the presence of forced melt flow obtained for the two coupling schemes. This suggests that both approaches can be used for the purpose of numerical simulations. Simulation results are also compared to analytic theory, showing excellent agreement for weak flow. Deviations at higher fluid velocities are discussed in terms of the underlying theoretical assumptions. This article is part of the theme issue 'Patterns in soft and biological matters'.
相场模型的薄界面极限被扩展到包括通过熔体对流的输运。本分析考虑了一个双面模型(液相和固相中扩散率相等)。对于相场方程和纳维 - 斯托克斯方程之间的耦合,使用匹配渐近分析研究了两种常用方案:(i)可变粘度和(ii)阻力模型。虽然对于可变粘度模型,在展开参数中可以证明薄界面极限存在到二阶,但对于阻力模型,在满足该阶的无滑移边界条件时会出现困难。然而,二维的详细数值模拟表明,在存在强制熔体流动的情况下,两种耦合方案得到的枝晶生长轮廓实际上没有差异。这表明两种方法都可用于数值模拟目的。模拟结果也与解析理论进行了比较,对于弱流显示出极好的一致性。在更高流体速度下的偏差根据潜在的理论假设进行了讨论。本文是主题为“软物质和生物物质中的模式”的一部分。