Suppr超能文献

具有对流的双面相场模型的薄界面极限

Thin interface limit of the double-sided phase-field model with convection.

作者信息

Subhedar Amol, Galenko Peter K, Varnik Fathollah

机构信息

Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany.

Physikalisch-Astronomische Fakultät, Friedrich-Schiller-Universität-Jena, 07743 Jena, Germany.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 May 15;378(2171):20190540. doi: 10.1098/rsta.2019.0540. Epub 2020 Apr 13.

Abstract

The thin interface limit of the phase-field model is extended to include transport via melt convection. A double-sided model (equal diffusivity in liquid and solid phases) is considered for the present analysis. For the coupling between phase-field and Navier-Stokes equations, two commonly used schemes are investigated using a matched asymptotic analysis: (i) variable viscosity and (ii) drag force model. While for the variable viscosity model, the existence of a thin interface limit can be shown up to the second order in the expansion parameter, difficulties arise in satisfying no-slip boundary condition at this order for the drag force model. Nevertheless, detailed numerical simulations in two dimensions show practically no difference in dendritic growth profiles in the presence of forced melt flow obtained for the two coupling schemes. This suggests that both approaches can be used for the purpose of numerical simulations. Simulation results are also compared to analytic theory, showing excellent agreement for weak flow. Deviations at higher fluid velocities are discussed in terms of the underlying theoretical assumptions. This article is part of the theme issue 'Patterns in soft and biological matters'.

摘要

相场模型的薄界面极限被扩展到包括通过熔体对流的输运。本分析考虑了一个双面模型(液相和固相中扩散率相等)。对于相场方程和纳维 - 斯托克斯方程之间的耦合,使用匹配渐近分析研究了两种常用方案:(i)可变粘度和(ii)阻力模型。虽然对于可变粘度模型,在展开参数中可以证明薄界面极限存在到二阶,但对于阻力模型,在满足该阶的无滑移边界条件时会出现困难。然而,二维的详细数值模拟表明,在存在强制熔体流动的情况下,两种耦合方案得到的枝晶生长轮廓实际上没有差异。这表明两种方法都可用于数值模拟目的。模拟结果也与解析理论进行了比较,对于弱流显示出极好的一致性。在更高流体速度下的偏差根据潜在的理论假设进行了讨论。本文是主题为“软物质和生物物质中的模式”的一部分。

相似文献

1
Thin interface limit of the double-sided phase-field model with convection.具有对流的双面相场模型的薄界面极限
Philos Trans A Math Phys Eng Sci. 2020 May 15;378(2171):20190540. doi: 10.1098/rsta.2019.0540. Epub 2020 Apr 13.
3
Modeling the flow in diffuse interface methods of solidification.凝固扩散界面方法中的流动建模。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):023303. doi: 10.1103/PhysRevE.92.023303. Epub 2015 Aug 11.
6
Phase-field simulations of dendritic crystal growth in a forced flow.强制流中枝晶生长的相场模拟
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 1):061601. doi: 10.1103/PhysRevE.63.061601. Epub 2001 May 15.
8
Phase-field model for Marangoni convection in liquid-gas systems with a deformable interface.具有可变形界面的液-气系统中马兰戈尼对流的相场模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jun;67(6 Pt 2):066307. doi: 10.1103/PhysRevE.67.066307. Epub 2003 Jun 26.
9
Quantitative phase-field modeling of two-phase growth.两相生长的定量相场建模
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011602. doi: 10.1103/PhysRevE.72.011602. Epub 2005 Jul 7.

引用本文的文献

2
Patterns in soft and biological matters.软物质和生物体系中的图案。
Philos Trans A Math Phys Eng Sci. 2020 May 15;378(2171):20200002. doi: 10.1098/rsta.2020.0002. Epub 2020 Apr 13.

本文引用的文献

1
The shape of dendritic tips.树突末梢的形状。
Philos Trans A Math Phys Eng Sci. 2020 May 15;378(2171):20190243. doi: 10.1098/rsta.2019.0243. Epub 2020 Apr 13.
3
Modeling the flow in diffuse interface methods of solidification.凝固扩散界面方法中的流动建模。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):023303. doi: 10.1103/PhysRevE.92.023303. Epub 2015 Aug 11.
4
Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow.
Phys Chem Chem Phys. 2015 Jul 15;17(29):19149-61. doi: 10.1039/c5cp03018h.
5
Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062403. doi: 10.1103/PhysRevE.87.062403. Epub 2013 Jun 7.
6
Selection theory of free dendritic growth in a potential flow.势流中自由枝晶生长的选择理论
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):042405. doi: 10.1103/PhysRevE.87.042405. Epub 2013 Apr 15.
7
Influence of external flows on crystal growth: numerical investigation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 1):031606. doi: 10.1103/PhysRevE.74.031606. Epub 2006 Sep 19.
8
Quantitative phase-field model of alloy solidification.合金凝固的定量相场模型
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 1):061604. doi: 10.1103/PhysRevE.70.061604. Epub 2004 Dec 17.
9
Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach.具有任意粘度对比度的Hele-Shaw流动的相场模型。I. 理论方法。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Aug;60(2 Pt B):1724-33. doi: 10.1103/physreve.60.1724.
10
Localized microstructures induced by fluid flow in directional solidification.定向凝固过程中流体流动诱导的局部微观结构。
Phys Rev Lett. 2001 Oct 15;87(16):166105. doi: 10.1103/PhysRevLett.87.166105. Epub 2001 Oct 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验