Suppr超能文献

通过降维预测互利共生网络中的 tipping points。

Predicting tipping points in mutualistic networks through dimension reduction.

机构信息

School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287.

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China.

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E639-E647. doi: 10.1073/pnas.1714958115. Epub 2018 Jan 8.

Abstract

Complex networked systems ranging from ecosystems and the climate to economic, social, and infrastructure systems can exhibit a tipping point (a "point of no return") at which a total collapse of the system occurs. To understand the dynamical mechanism of a tipping point and to predict its occurrence as a system parameter varies are of uttermost importance, tasks that are hindered by the often extremely high dimensionality of the underlying system. Using complex mutualistic networks in ecology as a prototype class of systems, we carry out a dimension reduction process to arrive at an effective 2D system with the two dynamical variables corresponding to the average pollinator and plant abundances. We show, using 59 empirical mutualistic networks extracted from real data, that our 2D model can accurately predict the occurrence of a tipping point, even in the presence of stochastic disturbances. We also find that, because of the lack of sufficient randomness in the structure of the real networks, weighted averaging is necessary in the dimension reduction process. Our reduced model can serve as a paradigm for understanding and predicting the tipping point dynamics in real world mutualistic networks for safeguarding pollinators, and the general principle can be extended to a broad range of disciplines to address the issues of resilience and sustainability.

摘要

从生态系统和气候到经济、社会和基础设施系统等复杂的网络系统都可能表现出一个临界点(“不归点”),在这个点上,系统会完全崩溃。了解临界点的动力学机制,并预测其发生,这是至关重要的,因为系统的参数变化往往受到系统基础的高度维度的阻碍。我们使用生态学中的复杂互利网络作为原型系统类,进行降维处理,得到一个具有两个动力学变量的有效 2D 系统,这两个变量对应于平均传粉者和植物的丰度。我们使用从真实数据中提取的 59 个经验互利网络表明,即使存在随机干扰,我们的 2D 模型也可以准确地预测临界点的发生。我们还发现,由于真实网络结构缺乏足够的随机性,在降维过程中需要加权平均。我们的简化模型可以作为理解和预测现实世界互利网络中临界点动力学的范例,以保护传粉者,并且一般原则可以扩展到广泛的学科领域,以解决弹性和可持续性的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a6c/5789925/5effb42b9e83/pnas.1714958115fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验