Robertson Connor, Safta Cosmin, Collier Nicholson, Ozik Jonathan, Ray Jaideep
Sandia National Laboratories, Livermore, CA, USA.
Argonne National Laboratory, Lemont, IL, USA.
Stat Med. 2025 Mar 15;44(6):e70029. doi: 10.1002/sim.70029.
Agent-based models (ABM) provide an excellent framework for modeling outbreaks and interventions in epidemiology by explicitly accounting for diverse individual interactions and environments. However, these models are usually stochastic and highly parametrized, requiring precise calibration for predictive performance. When considering realistic numbers of agents and properly accounting for stochasticity, this high-dimensional calibration can be computationally prohibitive. This paper presents a random forest-based surrogate modeling technique to accelerate the evaluation of ABMs and demonstrates its use to calibrate an epidemiological ABM named CityCOVID via Markov chain Monte Carlo (MCMC). The technique is first outlined in the context of CityCOVID's quantities of interest, namely hospitalizations and deaths, by exploring dimensionality reduction via temporal decomposition with principal component analysis (PCA) and via sensitivity analysis. The calibration problem is then presented, and samples are generated to best match COVID-19 hospitalization and death numbers in Chicago from March to June in 2020. These results are compared with previous approximate Bayesian calibration (IMABC) results, and their predictive performance is analyzed, showing improved performance with a reduction in computation.
基于主体的模型(ABM)通过明确考虑不同的个体互动和环境,为流行病学中的疫情爆发和干预建模提供了一个出色的框架。然而,这些模型通常是随机的且参数化程度很高,需要进行精确校准以实现预测性能。当考虑实际数量的主体并适当考虑随机性时,这种高维校准在计算上可能是令人望而却步的。本文提出了一种基于随机森林的代理建模技术,以加速ABM的评估,并展示了其通过马尔可夫链蒙特卡罗(MCMC)方法校准名为CityCOVID的流行病学ABM的用途。该技术首先在CityCOVID的感兴趣量(即住院人数和死亡人数)的背景下进行概述,通过主成分分析(PCA)进行时间分解和敏感性分析来探索降维。然后提出校准问题,并生成样本以最佳匹配2020年3月至6月芝加哥的COVID-19住院人数和死亡人数。将这些结果与以前的近似贝叶斯校准(IMABC)结果进行比较,并分析它们的预测性能,结果表明在减少计算量的情况下性能有所提高。