Suppr超能文献

基于随机森林的基于智能体的随机模型的贝叶斯校准

Bayesian Calibration of Stochastic Agent Based Model via Random Forest.

作者信息

Robertson Connor, Safta Cosmin, Collier Nicholson, Ozik Jonathan, Ray Jaideep

机构信息

Sandia National Laboratories, Livermore, CA, USA.

Argonne National Laboratory, Lemont, IL, USA.

出版信息

Stat Med. 2025 Mar 15;44(6):e70029. doi: 10.1002/sim.70029.

Abstract

Agent-based models (ABM) provide an excellent framework for modeling outbreaks and interventions in epidemiology by explicitly accounting for diverse individual interactions and environments. However, these models are usually stochastic and highly parametrized, requiring precise calibration for predictive performance. When considering realistic numbers of agents and properly accounting for stochasticity, this high-dimensional calibration can be computationally prohibitive. This paper presents a random forest-based surrogate modeling technique to accelerate the evaluation of ABMs and demonstrates its use to calibrate an epidemiological ABM named CityCOVID via Markov chain Monte Carlo (MCMC). The technique is first outlined in the context of CityCOVID's quantities of interest, namely hospitalizations and deaths, by exploring dimensionality reduction via temporal decomposition with principal component analysis (PCA) and via sensitivity analysis. The calibration problem is then presented, and samples are generated to best match COVID-19 hospitalization and death numbers in Chicago from March to June in 2020. These results are compared with previous approximate Bayesian calibration (IMABC) results, and their predictive performance is analyzed, showing improved performance with a reduction in computation.

摘要

基于主体的模型(ABM)通过明确考虑不同的个体互动和环境,为流行病学中的疫情爆发和干预建模提供了一个出色的框架。然而,这些模型通常是随机的且参数化程度很高,需要进行精确校准以实现预测性能。当考虑实际数量的主体并适当考虑随机性时,这种高维校准在计算上可能是令人望而却步的。本文提出了一种基于随机森林的代理建模技术,以加速ABM的评估,并展示了其通过马尔可夫链蒙特卡罗(MCMC)方法校准名为CityCOVID的流行病学ABM的用途。该技术首先在CityCOVID的感兴趣量(即住院人数和死亡人数)的背景下进行概述,通过主成分分析(PCA)进行时间分解和敏感性分析来探索降维。然后提出校准问题,并生成样本以最佳匹配2020年3月至6月芝加哥的COVID-19住院人数和死亡人数。将这些结果与以前的近似贝叶斯校准(IMABC)结果进行比较,并分析它们的预测性能,结果表明在减少计算量的情况下性能有所提高。

相似文献

3
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

本文引用的文献

1
Trajectory-oriented optimization of stochastic epidemiological models.随机流行病学模型的轨迹导向优化
Proc Winter Simul Conf. 2023 Dec;2023:1244-1255. doi: 10.1109/wsc60868.2023.10408258.
3
Using machine learning as a surrogate model for agent-based simulations.使用机器学习作为基于代理的模拟的替代模型。
PLoS One. 2022 Feb 10;17(2):e0263150. doi: 10.1371/journal.pone.0263150. eCollection 2022.
8
Predicting tipping points in mutualistic networks through dimension reduction.通过降维预测互利共生网络中的 tipping points。
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E639-E647. doi: 10.1073/pnas.1714958115. Epub 2018 Jan 8.
9
The parameter sensitivity of random forests.随机森林的参数敏感性。
BMC Bioinformatics. 2016 Sep 1;17(1):331. doi: 10.1186/s12859-016-1228-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验