Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, 130024, China.
Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, GA, 30912, USA.
Cell Death Dis. 2018 Jan 8;9(1):8. doi: 10.1038/s41419-017-0019-2.
Adult neurogenesis in hippocampal dentate gyrus (DG) is a complex, but precisely controlled process. Dysregulation of this event contributes to multiple neurological disorders, including major depression. Thus, it is of considerable interest to investigate how adult hippocampal neurogenesis is regulated. Here, we present evidence for neogenin, a multifunctional transmembrane receptor, to regulate adult mouse hippocampal neurogenesis. Loss of neogenin in adult neural stem cells (NSCs) or neural progenitor cells (NPCs) impaired NSCs/NPCs proliferation and neurogenesis, whereas increased their astrocytic differentiation. Mechanistic studies revealed a role for neogenin to positively regulate Gli1, a crucial downstream transcriptional factor of sonic hedgehog, and expression of Gli1 into neogenin depleted NSCs/NPCs restores their proliferation. Further morphological and functional studies showed additional abnormities, including reduced dendritic branches and spines, and impaired glutamatergic neuro-transmission, in neogenin-depleted new-born DG neurons; and mice with depletion of neogenin in NSCs/NPCs exhibited depressive-like behavior. These results thus demonstrate unrecognized functions of neogenin in adult hippocampal NSCs/NPCs-promoting NSCs/NPCs proliferation and neurogenesis and preventing astrogliogenesis and depressive-like behavior, and suggest neogenin regulation of Gli1 signaling as a possible underlying mechanism.
成体海马齿状回(DG)中的神经发生是一个复杂但精确控制的过程。该事件的失调会导致多种神经疾病,包括重度抑郁症。因此,研究成体海马神经发生是如何被调节的具有重要意义。在这里,我们提出证据表明,多功能跨膜受体神经调节素(neogenin)可以调节成年小鼠海马神经发生。在成年神经干细胞(NSCs)或神经前体细胞(NPCs)中敲除神经调节素会损害 NSCs/NPCs 的增殖和神经发生,而增加其星形胶质细胞分化。机制研究表明,神经调节素通过正调控 sonic hedgehog 的关键下游转录因子 Gli1 来发挥作用,将 Gli1 表达转入神经调节素耗尽的 NSCs/NPCs 中可恢复其增殖能力。进一步的形态学和功能研究显示,在神经调节素耗尽的新生 DG 神经元中存在其他异常,包括树突分支和棘突减少以及谷氨酸能神经传递受损;而 NSCs/NPCs 中神经调节素缺失的小鼠表现出类似抑郁的行为。这些结果表明,神经调节素在成体海马 NSCs/NPCs 中具有未被认识到的功能,即促进 NSCs/NPCs 的增殖和神经发生,防止星形胶质细胞发生和类似抑郁的行为,并提示神经调节素调节 Gli1 信号可能是一种潜在的机制。