Instituto de Telecomunicações, Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
Altranportugal, 1990-096 Lisbon, Portugal.
Sensors (Basel). 2018 Jan 9;18(1):160. doi: 10.3390/s18010160.
An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT).
日常生活活动(ADL)的识别准确性的提高对于增强生活环境和环境辅助生活(AAL)任务的不同目标非常重要。这一提高可以通过识别周围环境来实现。尽管这通常用于识别位置,但通过识别特定环境中的声音,可以提高 ADL 的识别能力。本文回顾了可用于从移动设备获取的声数据的音频指纹识别技术。为了识别使用移动设备获取的数据的 ADL 环境,进行了全面的文献检索,以确定 2002 年至 2017 年间发表的相关英语文献。总共分析和选择了 115 篇引文中的 40 项研究。结果突出了几种音频指纹识别技术,包括改进的离散余弦变换(MDCT)、梅尔频率倒谱系数(MFCC)、主成分分析(PCA)、快速傅里叶变换(FFT)、高斯混合模型(GMM)、似然估计、对数调制复拉普拉斯变换(LMCLT)、支持向量机(SVM)、常数 Q 变换(CQT)、对称成对提升(SPB)、Philips 鲁棒哈希(PRH)、线性判别分析(LDA)和离散余弦变换(DCT)。