Suppr超能文献

用奥克斯恒等式对观测信息矩阵进行数值近似。

Numerical approximation of the observed information matrix with Oakes' identity.

作者信息

Chalmers R Philip

机构信息

Department of Educational Psychology, University of Georgia, Athens, Georgia, USA.

出版信息

Br J Math Stat Psychol. 2018 Nov;71(3):415-436. doi: 10.1111/bmsp.12127. Epub 2018 Jan 9.

Abstract

An efficient and accurate numerical approximation methodology useful for obtaining the observed information matrix and subsequent asymptotic covariance matrix when fitting models with the EM algorithm is presented. The numerical approximation approach is compared to existing algorithms intended for the same purpose, and the computational benefits and accuracy of this new approach are highlighted. Instructive and real-world examples are included to demonstrate the methodology concretely, properties of the estimator are discussed in detail, and a Monte Carlo simulation study is included to investigate the behaviour of a multi-parameter item response theory model using three competing finite-difference algorithms.

摘要

提出了一种高效且准确的数值近似方法,该方法在使用期望最大化(EM)算法拟合模型时,有助于获得观测信息矩阵及后续的渐近协方差矩阵。将该数值近似方法与用于相同目的的现有算法进行了比较,并突出了这种新方法的计算优势和准确性。文中包含了具有启发性的实际示例,以具体展示该方法,详细讨论了估计量的性质,还纳入了一项蒙特卡罗模拟研究,以使用三种相互竞争的有限差分算法来研究多参数项目反应理论模型的行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验