Suppr超能文献

单原子 Pt 嵌入金属-有机框架中用于高效光催化。

Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

出版信息

Adv Mater. 2018 Feb;30(7). doi: 10.1002/adma.201705112. Epub 2018 Jan 8.

Abstract

It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H production activity.

摘要

将单原子 Pt 限域在金属-有机框架(MOF)中以提高贵金属助催化剂的分散度和利用率,并促进光催化中的电荷转移,这是一项极具吸引力但极具挑战性的工作。在此,首次成功地将单原子 Pt 限域在 MOF 中,在可见光照射下,该单原子 Pt 可将电子从 MOF 敏化剂转移到 Pt 受体,用于水分解产氢。值得注意的是,单原子 Pt 表现出优异的活性,其周转频率(TOF)高达 35 h -1 ,约是由相同 MOF 稳定的 Pt 纳米粒子的 30 倍。超快瞬态吸收光谱进一步揭示了限域在 MOF 中的单原子 Pt 提供了高效的电子转移通道,密度泛函理论(DFT)计算表明,将单原子 Pt 引入 MOF 中提高了氢的结合能,从而极大地提高了光催化产氢活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验