Ramírez-Hernández Juan José, Fernandes de Almeida Vitor, Abou-Khalil Zahraa, Ferrer Belén, Llabrés I Xamena Francesc X, Daturi Marco, Clet Guillaume, Vayá Ignacio, Baldoví Herme G, Dhakshinamoorthy Amarajothi, El-Roz Mohamad, Navalón Sergio
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
Université de Caen Normandie, ENSICAEN, CNRS, LCS, 14000 Caen, France.
ACS Appl Mater Interfaces. 2025 Sep 3;17(35):49485-49499. doi: 10.1021/acsami.5c10215. Epub 2025 Aug 25.
Solar-assisted gaseous CO hydrogenation to CH is a potential strategy for favoring the transition to net zero emissions. Here, we report the development of a series of efficient metal-organic frameworks with MIL-101(Cr or Fe) topology decorated with RuO nanoparticles (ca. 0.2-2 wt %) as heterogeneous photocatalysts for the selective methanation of CO by H under simulated sunlight irradiation. The activity of RuO(1 wt %)@MIL-101(Cr) is between 3 and 50 times higher than related MOF-based photocatalysts under similar reaction conditions. Among the different photocatalysts, the optimized RuO(2 wt %)@MIL-101(Cr) photocatalyst showed 98.1% CO conversion with 98.8% CH selectivity reaching a production rate of 7.85 mmol g h with 720 mW cm at 200 °C. Further, this photocatalyst exhibited a record apparent quantum yield of 9.2% at 600 nm and 200 °C after subtracting thermal activity contribution compared to any previous MOF- or other heterogeneous-based photocatalyst reported so far. The photocatalyst retained its activity and integrity upon reuse for about 110 h. Transient photocurrent, electrochemical impedance, photoluminescence, and laser flash photolysis spectroscopies together with additional photocatalytic experiments suggest the occurrance of dual photochemical and photothermal reaction pathways. The photocatalytic CO methanation reaction mechanism was further investigated using Fourier transform infrared spectroscopy.
太阳能辅助气态CO加氢制CH₄是助力向净零排放转型的一种潜在策略。在此,我们报道了一系列具有MIL-101(Cr或Fe)拓扑结构的高效金属有机框架材料的开发,这些材料用RuO₂纳米颗粒(约0.2 - 2 wt%)修饰,作为在模拟太阳光照射下H₂将CO选择性甲烷化的多相光催化剂。在类似反应条件下,RuO₂(1 wt%)@MIL-101(Cr)的活性比相关的基于MOF的光催化剂高3至50倍。在不同的光催化剂中,优化后的RuO₂(2 wt%)@MIL-101(Cr)光催化剂在200℃、720 mW/cm²条件下,CO转化率为98.1%,CH₄选择性为98.8%,产率达到7.85 mmol g⁻¹ h⁻¹。此外,与迄今报道的任何基于MOF或其他多相的光催化剂相比,该光催化剂在减去热活性贡献后,在600 nm和200℃下表现出创纪录的9.2%的表观量子产率。该光催化剂在重复使用约110小时后仍保持其活性和完整性。瞬态光电流、电化学阻抗、光致发光和激光闪光光解光谱以及额外的光催化实验表明存在双光化学和光热反应途径。使用傅里叶变换红外光谱进一步研究了光催化CO甲烷化反应机理。