Suppr超能文献

皮下 C1 抑制剂浓度与遗传性血管性水肿患者发作风险的暴露-反应模型评估。

Exposure-Response Model of Subcutaneous C1-Inhibitor Concentrate to Estimate the Risk of Attacks in Patients With Hereditary Angioedema.

机构信息

Clinical Pharmacology and Early Development, CSL Behring, King of Prussia, Pennsylvania, USA.

Global Clinical Research, CSL Behring GmbH, Marburg, Germany.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2018 Mar;7(3):158-165. doi: 10.1002/psp4.12271. Epub 2018 Jan 9.

Abstract

Subcutaneous C1-inhibitor (HAEGARDA, CSL Behring), is a US Food and Drug Administration (FDA)-approved, highly concentrated formulation of a plasma-derived C1-esterase inhibitor (C1-INH), which, in the phase III Clinical Studies for Optimal Management in Preventing Angioedema with Low-Volume Subcutaneous C1-inhibitor Replacement Therapy (COMPACT) trial, reduced the incidence of hereditary angioedema (HAE) attacks when given prophylactically. Data from the COMPACT trial were used to develop a repeated time-to-event model to characterize the timing and frequency of HAE attacks as a function of C1-INH activity, and then develop an exposure-response model to assess the relationship between C1-INH functional activity levels (C1-INH(f)) and the risk of an attack. The C1-INH(f) values of 33.1%, 40.3%, and 63.1% were predicted to correspond with 50%, 70%, and 90% reductions in the HAE attack risk, respectively, relative to no therapy. Based on trough C1-INH(f) values for the 40 IU/kg (40.2%) and 60 IU/kg (48.0%) C1-INH (SC) doses, the model predicted that 50% and 67% of the population, respectively, would see at least a 70% decrease in the risk of an attack.

摘要

皮下注射 C1 抑制剂(HAEGARDA,CSL Behring)是一种经美国食品和药物管理局(FDA)批准的高浓度血浆衍生 C1 酯酶抑制剂(C1-INH)制剂,在 III 期临床试验中用于预防低剂量皮下 C1 抑制剂替代疗法的遗传性血管性水肿(HAE)发作的最佳管理(COMPACT)试验中,预防性给药可降低 HAE 发作的发生率。COMPACT 试验的数据被用于开发重复时间事件模型,以表征 C1-INH 活性作为 HAE 发作时间和频率的函数,并开发暴露-反应模型,以评估 C1-INH 功能活性水平(C1-INH(f))与攻击风险之间的关系。预计 C1-INH(f)值为 33.1%、40.3%和 63.1%,分别对应于与无治疗相比,HAE 攻击风险降低 50%、70%和 90%。基于 40 IU/kg(40.2%)和 60 IU/kg(48.0%)C1-INH(SC)剂量的谷值 C1-INH(f)值,该模型预测分别有 50%和 67%的人群将看到至少 70%的攻击风险降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44f3/5869560/f79b96991f17/PSP4-7-158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验