Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Missouri.
Cytoskeleton (Hoboken). 2018 May;75(5):185-200. doi: 10.1002/cm.21432. Epub 2018 Jan 18.
It remains unclear how flagella generate propulsive, oscillatory waveforms. While it is well known that dynein motors, in combination with passive cytoskeletal elements, drive the bending of the axoneme by applying shearing forces and bending moments to microtubule doublets, the origin of rhythmicity is still mysterious. Most conceptual models of flagellar oscillation involve dynein regulation or switching, so that dynein activity first on one side of the axoneme, then the other, drives bending. In contrast, a "viscoelastic flutter" mechanism has recently been proposed, based on a dynamic structural instability. Simple mathematical models of coupled elastic beams in viscous fluid, subjected to steady, axially distributed, dynein forces of sufficient magnitude, can exhibit oscillatory motion without any switching or dynamic regulation. Here we introduce more realistic finite element (FE) models of 6-doublet and 9-doublet flagella, with radial spokes and interdoublet links that slide along the central pair or corresponding doublet. These models demonstrate the viscoelastic flutter mechanism. Above a critical force threshold, these models exhibit an abrupt onset of propulsive, wavelike oscillations typical of flutter instability. Changes in the magnitude and spatial distribution of steady dynein force, or to viscous resistance, lead to behavior qualitatively consistent with experimental observations. This study demonstrates the ability of FE models to simulate nonlinear interactions between axonemal components during flagellar beating, and supports the plausibility of viscoelastic flutter as a mechanism of flagellar oscillation.
目前尚不清楚鞭毛如何产生推进、振荡波形。虽然众所周知,动力蛋白马达与被动细胞骨架元件结合,通过向微管二联体施加剪切力和弯矩来驱动轴丝的弯曲,但节律的起源仍然是神秘的。大多数鞭毛振荡的概念模型都涉及动力蛋白的调节或切换,因此动力蛋白的活性首先在轴丝的一侧,然后在另一侧,驱动弯曲。相比之下,最近基于动态结构不稳定性提出了一种“粘弹性颤振”机制。在粘性流体中,受稳态、轴向分布的、足够大的动力蛋白力的耦合弹性梁的简单数学模型,可以在没有任何切换或动态调节的情况下表现出振荡运动。在这里,我们引入了更现实的 6- doublet 和 9- doublet 鞭毛的有限元 (FE) 模型,这些模型具有辐射状的辐条和沿中央对或相应的二联体滑动的 inter-doublet 连接。这些模型展示了粘弹性颤振机制。在临界力阈值以上,这些模型表现出推进、波状的振荡,这是颤振不稳定性的典型特征。稳态动力蛋白力的大小和空间分布的变化,或粘性阻力的变化,导致与实验观察结果定性一致的行为。本研究证明了 FE 模型在鞭毛拍打过程中模拟轴丝组件之间非线性相互作用的能力,并支持粘弹性颤振作为鞭毛振荡机制的合理性。