Suppr超能文献

对不稳定模式的分析区分了鞭毛运动的数学模型。

Analysis of unstable modes distinguishes mathematical models of flagellar motion.

作者信息

Bayly P V, Wilson K S

机构信息

Mechanical Engineering and Materials Science, Washington University in Saint Louis, 1 Brookings Drive, Box 1185, Saint Louis, MO 63130, USA

Mechanical Engineering and Materials Science, Washington University in Saint Louis, 1 Brookings Drive, Box 1185, Saint Louis, MO 63130, USA.

出版信息

J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2015.0124.

Abstract

The mechanisms underlying the coordinated beating of cilia and flagella remain incompletely understood despite the fundamental importance of these organelles. The axoneme (the cytoskeletal structure of cilia and flagella) consists of microtubule doublets connected by passive and active elements. The motor protein dynein is known to drive active bending, but dynein activity must be regulated to generate oscillatory, propulsive waveforms. Mathematical models of flagellar motion generate quantitative predictions that can be analysed to test hypotheses concerning dynein regulation. One approach has been to seek periodic solutions to the linearized equations of motion. However, models may simultaneously exhibit both periodic and unstable modes. Here, we investigate the emergence and coexistence of unstable and periodic modes in three mathematical models of flagellar motion, each based on a different dynein regulation hypothesis: (i) sliding control; (ii) curvature control and (iii) control by interdoublet separation (the 'geometric clutch' (GC)). The unstable modes predicted by each model are used to critically evaluate the underlying hypothesis. In particular, models of flagella with 'sliding-controlled' dynein activity admit unstable modes with non-propulsive, retrograde (tip-to-base) propagation, sometimes at the same parameter values that lead to periodic, propulsive modes. In the presence of these retrograde unstable modes, stable or periodic modes have little influence. In contrast, unstable modes of the GC model exhibit switching at the base and propulsive base-to-tip propagation.

摘要

尽管纤毛和鞭毛的协调摆动具有重要的基础意义,但其潜在机制仍未被完全理解。轴丝(纤毛和鞭毛的细胞骨架结构)由通过被动和主动元件连接的微管双联体组成。已知动力蛋白驱动主动弯曲,但动力蛋白的活性必须受到调节才能产生振荡的推进波形。鞭毛运动的数学模型产生了定量预测,可对其进行分析以检验有关动力蛋白调节的假设。一种方法是寻求线性化运动方程的周期解。然而,模型可能同时呈现周期模式和不稳定模式。在这里,我们研究了鞭毛运动的三个数学模型中不稳定模式和周期模式的出现与共存情况,每个模型基于不同的动力蛋白调节假设:(i)滑动控制;(ii)曲率控制;(iii)通过双联体间分离进行控制(“几何离合器”(GC))。每个模型预测的不稳定模式被用于严格评估其潜在假设。特别是,具有“滑动控制”动力蛋白活性的鞭毛模型允许存在具有非推进性、逆行(从尖端到基部)传播的不稳定模式,有时在导致周期性推进模式的相同参数值下也会出现。在这些逆行不稳定模式存在的情况下,稳定或周期模式的影响很小。相比之下,GC模型的不稳定模式在基部表现出切换以及从基部到尖端的推进传播。

相似文献

7
Nonlinear dynamics of cilia and flagella.纤毛和鞭毛的非线性动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051918. doi: 10.1103/PhysRevE.79.051918. Epub 2009 May 21.
10
Curvature regulation of the ciliary beat through axonemal twist.通过轴丝扭转调节纤毛的弯曲。
Phys Rev E. 2016 Oct;94(4-1):042426. doi: 10.1103/PhysRevE.94.042426. Epub 2016 Oct 28.

引用本文的文献

4
Modelling Motility: The Mathematics of Spermatozoa.模拟运动:精子的数学原理
Front Cell Dev Biol. 2021 Jul 20;9:710825. doi: 10.3389/fcell.2021.710825. eCollection 2021.
7
Cilia oscillations.纤毛摆动。
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190157. doi: 10.1098/rstb.2019.0157. Epub 2019 Dec 30.
8
Instability-driven oscillations of elastic microfilaments.弹性微丝的不稳定性驱动的振荡。
J R Soc Interface. 2018 Dec 21;15(149):20180594. doi: 10.1098/rsif.2018.0594.
10
How Does Cilium Length Affect Beating?纤毛长度如何影响搏动?
Biophys J. 2019 Apr 2;116(7):1292-1304. doi: 10.1016/j.bpj.2019.02.012. Epub 2019 Feb 26.

本文引用的文献

4
Lag, lock, sync, slip: the many 'phases' of coupled flagella.滞后、锁定、同步、滑动:对偶鞭毛的许多“阶段”。
J R Soc Interface. 2014 Feb 26;11(94):20131160. doi: 10.1098/rsif.2013.1160. Print 2014 May 6.
5
The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles.鞭毛轴丝和交联丝束中的反弯现象。
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12180-5. doi: 10.1073/pnas.1302113110. Epub 2013 Jul 3.
9
Nonlinear dynamics of cilia and flagella.纤毛和鞭毛的非线性动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051918. doi: 10.1103/PhysRevE.79.051918. Epub 2009 May 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验