Baek Woonsang, Baek Sujeong, Kim Duck Young
Department of System Design and Control Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea.
Sensors (Basel). 2018 Jan 8;18(1):154. doi: 10.3390/s18010154.
Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user's subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated.
已经提出了许多故障检测方法来监测各种工业系统的健康状况。对监测信号进行特征化是选择合适检测方法的前提条件。然而,故障检测方法往往是根据用户的主观知识或他们对该方法的熟悉程度来决定的,而不是遵循预定义的选择规则。本研究针对给定系统的状态信号特征,研究了两种检测方法的性能敏感性:突变方差、特征指标、可分辨频率和可分辨指数。评估了来自四个不同实际系统的关键特征指标与两种使用模式识别的故障检测方法的性能之间的关系。