Suppr超能文献

Pin1 催化环磷酸化的扩展影响由 S71E 磷酸模拟揭示。

Extended Impact of Pin1 Catalytic Loop Phosphorylation Revealed by S71E Phosphomimetic.

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States.

Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States.

出版信息

J Mol Biol. 2018 Mar 2;430(5):710-721. doi: 10.1016/j.jmb.2017.12.021. Epub 2018 Jan 6.

Abstract

Pin1 is a two-domain human protein that catalyzes the cis-trans isomerization of phospho-Ser/Thr-Pro (pS/T-P) motifs in numerous cell-cycle regulatory proteins. These pS/T-P motifs bind to Pin1's peptidyl-prolyl isomerase (PPIase) domain in a catalytic pocket, between an extended catalytic loop and the PPIase domain core. Previous studies showed that post-translational phosphorylation of S71 in the catalytic loop decreases substrate binding affinity and isomerase activity. To define the origins for these effects, we investigated a phosphomimetic Pin1 mutant, S71E-Pin1, using solution NMR. We find that S71E perturbs not only its host loop but also the nearby PPIase core. The perturbations identify a local network of hydrogen bonds and salt bridges that is more extended than previously thought, and includes interactions between the catalytic loop and the α2/α3 turn in the PPIase core. Explicit-solvent molecular dynamics simulations and phylogenetic analysis suggest that these interactions act as conserved "latches" between the loop and PPIase core that enhance binding of phosphorylated substrates, as they are absent in PPIases lacking pS/T-P specificity. Our results suggest that S71 is a hub residue within an electrostatic network primed for phosphorylation, and may illustrate a common mechanism of phosphorylation-mediated allostery.

摘要

Pin1 是一种具有两个结构域的人类蛋白,能够催化许多细胞周期调控蛋白中磷酸化丝氨酸/苏氨酸-脯氨酸(pS/T-P)基序的顺式-反式异构化。这些 pS/T-P 基序在催化口袋中结合到 Pin1 的肽基脯氨酰顺反异构酶(PPIase)结构域,位于扩展的催化环和 PPIase 结构域核心之间。先前的研究表明,催化环中 S71 的翻译后磷酸化会降低底物结合亲和力和异构酶活性。为了确定这些影响的起源,我们使用溶液 NMR 研究了一种磷酸模拟 Pin1 突变体,S71E-Pin1。我们发现,S71E 不仅扰乱了其宿主环,还扰乱了附近的 PPIase 核心。这些扰动确定了一个比以前想象的更扩展的局部氢键和盐桥网络,包括催化环与 PPIase 核心中的α2/α3 转角之间的相互作用。显式溶剂分子动力学模拟和系统发育分析表明,这些相互作用作为“闩锁”存在于环和 PPIase 核心之间,增强了磷酸化底物的结合,因为在缺乏 pS/T-P 特异性的 PPIases 中不存在这些相互作用。我们的结果表明,S71 是一个处于磷酸化准备状态的静电网络的枢纽残基,可能说明了磷酸化介导变构的常见机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验