Suppr超能文献

利用亚细胞金刚石磁力计对磁共振图像对比的微观起源进行映射。

Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry.

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.

出版信息

Nat Commun. 2018 Jan 9;9(1):131. doi: 10.1038/s41467-017-02471-7.

Abstract

Magnetic resonance imaging (MRI) is a widely used biomedical imaging modality that derives much of its contrast from microscale magnetic field patterns in tissues. However, the connection between these patterns and the appearance of macroscale MR images has not been the subject of direct experimental study due to a lack of methods to map microscopic fields in biological samples. Here, we optically probe magnetic fields in mammalian cells and tissues with submicron resolution and nanotesla sensitivity using nitrogen-vacancy diamond magnetometry, and combine these measurements with simulations of nuclear spin precession to predict the corresponding MRI contrast. We demonstrate the utility of this technology in an in vitro model of macrophage iron uptake and histological samples from a mouse model of hepatic iron overload. In addition, we follow magnetic particle endocytosis in live cells. This approach bridges a fundamental gap between an MRI voxel and its microscopic constituents.

摘要

磁共振成像(MRI)是一种广泛应用的生物医学成像模式,其对比度很大程度上源于组织中的微观磁场模式。然而,由于缺乏在生物样本中绘制微观磁场的方法,这些模式与宏观磁共振图像之间的联系尚未成为直接实验研究的主题。在这里,我们使用氮空位金刚石磁强计以亚微米分辨率和纳特斯拉灵敏度在哺乳动物细胞和组织中光学探测磁场,并将这些测量结果与核自旋进动的模拟相结合,以预测相应的 MRI 对比度。我们在巨噬细胞铁摄取的体外模型以及肝铁过载小鼠模型的组织学样本中证明了这项技术的实用性。此外,我们还在活细胞中跟踪磁性粒子的内吞作用。这种方法弥合了 MRI 体素与其微观成分之间的基本差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/367d/5760582/b709f17f8932/41467_2017_2471_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验