Suppr超能文献

通过强化学习实现基于磁共振成像的神经化学传感器的自动设计与优化

Automatic design and optimization of MRI-based neurochemical sensors via reinforcement learning.

作者信息

Ali Zulaikha, Asparin Aaron, Zhang Yunfei, Mettee Hannah, Taha Diya, Ha Yuna, Bhanot Deepika, Sarwar Khaldoon, Kiran Hamzah, Wu Shuo, Wei He

机构信息

Department of Chemistry and Biochemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA.

Department of Electrical and Computer Engineering, California State University Fresno, 2320 E San Ramon Ave, Fresno, CA, 93740, USA.

出版信息

Discov Nano. 2025 Sep 1;20(1):148. doi: 10.1186/s11671-025-04338-z.

Abstract

Magnetic resonance imaging (MRI) is a cornerstone of medical imaging, celebrated for its non-invasiveness, high spatial and temporal resolution, and exceptional soft tissue contrast, with over 100 million clinical procedures performed annually worldwide. In this field, MRI-based nanosensors have garnered significant interest in biomedical research due to their tunable sensing mechanisms, high permeability, rapid kinetics, and surface functionality. Extensive studies in the field have reported the use of superparamagnetic iron oxide nanoparticles (SPIONs) and proteins as a proof-of-concept for sensing critical neurochemicals via MRI. However, the signal change ratio and response rate of our SPION-protein-based in vitro dopamine and in vivo calcium sensors need to be further enhanced to detect the subtle and transient fluctuations in neurochemical levels associated with neural activities, starting from in vitro diagnostics. In this paper, we present an advanced reinforcement-learning-based computational model that treats sensor design as an optimal decision-making problem by choosing sensor performance as a weighted reward objective function. The adjustments of the SPION's and protein's three-dimensional configuration and magnetic moment establish a set of actions that can autonomously maximize the cumulative reward in the computational environment. Our new model first elucidates the sensor's conformation alteration behind the increment in T contrast observed experimentally in MRI in the presence and absence of calcium and dopamine neurochemicals. Additionally, our enhanced machine-learning algorithm can autonomously learn the performance trends of SPION-protein-based sensors and identify their optimal structural parameters. Experimental in vitro validation with TEM and MR relaxometry confirmed the predicted optimal SPION diameters, demonstrating the highest sensing performance at 9 nm for calcium and 11 nm for dopamine detection. Beginning with in vitro diagnostics, these results demonstrate a versatile modeling platform for the development of MRI-based neurochemical sensors, providing insights into their behavior under operational conditions. This platform also enables the autonomous design of improved sensor sizes and geometries, providing a roadmap for the future optimization of MRI sensors.

摘要

磁共振成像(MRI)是医学成像的基石,因其非侵入性、高空间和时间分辨率以及出色的软组织对比度而备受赞誉,全球每年进行超过1亿次临床检查。在该领域,基于MRI的纳米传感器因其可调节的传感机制、高渗透性、快速动力学和表面功能,在生物医学研究中引起了极大关注。该领域的大量研究报告了使用超顺磁性氧化铁纳米颗粒(SPIONs)和蛋白质作为通过MRI检测关键神经化学物质的概念验证。然而,我们基于SPION-蛋白质的体外多巴胺和体内钙传感器的信号变化率和响应率需要进一步提高,以便从体外诊断开始检测与神经活动相关的神经化学水平的细微和瞬态波动。在本文中,我们提出了一种先进的基于强化学习的计算模型,该模型将传感器设计视为一个最优决策问题,通过选择传感器性能作为加权奖励目标函数。对SPION和蛋白质的三维构型和磁矩进行调整,建立了一组可以在计算环境中自主最大化累积奖励的动作。我们的新模型首先阐明了在有和没有钙和多巴胺神经化学物质的情况下,MRI实验中观察到的T对比度增加背后的传感器构象变化。此外,我们增强的机器学习算法可以自主学习基于SPION-蛋白质的传感器的性能趋势,并识别其最佳结构参数。用透射电子显微镜(TEM)和磁共振弛豫测量法进行的体外实验验证证实了预测的最佳SPION直径,表明在检测钙时9纳米和检测多巴胺时11纳米具有最高的传感性能。从体外诊断开始,这些结果展示了一个用于开发基于MRI的神经化学传感器的通用建模平台,提供了对其在操作条件下行为的见解。这个平台还能够自主设计改进的传感器尺寸和几何形状,为未来MRI传感器的优化提供了路线图。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验