Aristea Translational Medicine Corporation, Park City, UT 84098, United States.
Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, United States.
Curr Alzheimer Res. 2018;15(9):883-891. doi: 10.2174/1567205015666180110120026.
Concussion (mild) and other moderate traumatic brain injury (TBI) and Alzheimer's disease (AD) share overlapping neuropathologies, including neuronal pre-programmed cell death (PPCD), and clinical impairments and disabilities. Multiple clinical trials targeting mechanisms based on the Amyloid Hypothesis of AD have so far failed, indicating that it is prudent for new drug developments to also pursue mechanisms independent of the Amyloid Hypothesis. To address these issues, we have proposed the use of an animal model of concussion/TBI as a supplement to AD transgenic mice to provide an indication of an AD drug candidate's potential for preventing PPCD and resulting progression towards dementia in AD.
We searched PubMed/Medline and the references of identified articles for background on the neuropathological progression of AD and its implications for drug target identification, for AD clinical trial criteria used to assess disease modification outcomes, for plasma biomarkers associated with AD and concussion/TBI, neuropathologies and especially PPCD, and for methodological critiques of AD and other neuropsychiatric clinical trial methods.
We identified and address seven issues and highlight the Thal-Sano AD 'Time to Onset of Impairment' Design for possible applications in our clinical trials. Diverse and significant pathological cascades and indications of self-induced neuronal PPCD were found in concussion/TBI, anoxia, and AD animal models. To address the dearth of peripheral markers of AD and concussion/TBI brain pathologies and PPCD we evaluated Extracellular Vesicles (EVs) enriched for neuronal origin, including exosomes. In our concussion/TBI, anoxia and AD animal models we found evidence consistent with the presence of time-dependent PPCD and (-)-phenserine suppression of neuronal self-induced PPCD. We hence developed an extended controlled release formulation of (-)-phenserine to provide individualized dosing and stable therapeutic brain concentrations, to pharmacologically interrogate PPCD as a drug development target. To address the identified problems potentially putting any clinical trial at risk of failure, we developed exploratory AD and concussion/TBI clinical trial designs.
Our findings inform the biomarker indication of progression of pathological targets in neurodegenerations and propose a novel approach to these conditions through neuronal protection against self-induced PPCD.
轻度脑震荡和其他中度创伤性脑损伤(TBI)与阿尔茨海默病(AD)具有重叠的神经病理学特征,包括神经元预先编程的细胞死亡(PPCD)以及临床损伤和残疾。基于 AD 的淀粉样蛋白假说的多项临床试验均以失败告终,这表明新药开发也应寻求独立于淀粉样蛋白假说的机制是谨慎的。为了解决这些问题,我们提出使用脑震荡/TBI 动物模型作为 AD 转基因小鼠的补充,以提供 AD 候选药物预防 PPCD 及其导致 AD 痴呆进展的潜力的指示。
我们在 PubMed/Medline 上搜索并查阅了确定文章的参考文献,以了解 AD 神经病理学进展及其对药物靶点识别的意义、用于评估疾病修饰结果的 AD 临床试验标准、与 AD 和脑震荡/TBI 相关的血浆生物标志物、神经病理学,特别是 PPCD 以及 AD 和其他神经精神临床试验方法的方法学批评。
我们确定并解决了七个问题,并强调了 Thal-Sano AD“开始出现损伤的时间”设计,以可能应用于我们的临床试验。在脑震荡/TBI、缺氧和 AD 动物模型中发现了不同且显著的病理级联反应和神经元自我诱导 PPCD 的迹象。为了解决 AD 和脑震荡/TBI 脑病理学和 PPCD 的外周标志物缺乏的问题,我们评估了富含神经元来源的细胞外囊泡(EVs),包括外泌体。在我们的脑震荡/TBI、缺氧和 AD 动物模型中,我们发现了与时间依赖性 PPCD 一致的证据,以及 (-)-phenserine 对神经元自我诱导 PPCD 的抑制作用。因此,我们开发了 (-)-phenserine 的扩展控释配方,以提供个体化给药和稳定的治疗性脑浓度,以研究 PPCD 作为药物开发靶点。为了解决可能使任何临床试验面临失败风险的已确定问题,我们开发了探索性 AD 和脑震荡/TBI 临床试验设计。
我们的发现为神经退行性疾病中病理靶标的进展提供了生物标志物的指示,并通过神经元对自我诱导的 PPCD 的保护提出了一种针对这些疾病的新方法。