Svane Christian, Forman Christian Riis, Nielsen Jens Bo, Geertsen Svend Sparre
Department of Neuroscience, University of Copenhagen, Panum Institute 33.3, Blegdamsvej 3, 2200, Copenhagen, Denmark.
Department of Nutrition, Exercise and Sports, University of Copenhagen, Panum Institute 33.3, Blegdamsvej 3, 2200, Copenhagen, Denmark.
Exp Brain Res. 2018 Mar;236(3):745-753. doi: 10.1007/s00221-018-5171-0. Epub 2018 Jan 10.
Direct and indirect corticospinal pathways to finger muscles may play a different role in control of the upper extremity. We used transcranial magnetic stimulation (TMS) and coherence analysis to characterize the corticospinal drive to the first dorsal interosseous (FDI) and abductor pollicis brevis (APB) when active during a precision and power grip task. In experiment 1, single motor units were recorded during precision grip and power grip in 20 adults (25.2 ± 7.1 years). Post-stimulus time histograms (PSTH) were obtained following TMS. In experiment 2, coherence and cross-correlation analysis of the FDI and APB surface EMG were used to investigate the temporal organization of corticospinal drive during precision grip and power grip in 15 adults (27.4 ± 8.1 years). We found no significant differences in PSTH peak onset (26.6 ± 1.9 vs. 26.7 ± 2.0 ms, p = 0.75), maximal peak (27.4 ± 1.9 vs. 27.4 ± 1.9 ms, p = 1.0) or peak duration (2.3 ± 1.1 vs. 2.3 ± 1.0 ms, p = 0.75) for the 11 recovered motor units during precision grip and power grip. Also, no significant difference in coherence or the width of the synchronization peaks during precision grip (7.2 ± 3.7 ms) and power grip (7.9 ± 3.1 ms) could be observed (p = 0.59). The short duration of peaks elicited in the PSTH of single motor units following TMS and central synchronization peaks of voluntarily activated motor units during precision and power grip suggests that the direct corticospinal pathway (the corticomotoneuronal system) is equally involved in the control of both tasks. The data do not support that indirect pathways would make a larger contribution to power grip.
通向手指肌肉的直接和间接皮质脊髓通路在控制上肢方面可能发挥不同作用。我们使用经颅磁刺激(TMS)和相干分析来表征在精确抓握和强力抓握任务中活动时,皮质脊髓对第一背侧骨间肌(FDI)和拇短展肌(APB)的驱动。在实验1中,记录了20名成年人(25.2±7.1岁)在精确抓握和强力抓握过程中的单个运动单位。在TMS后获得刺激后时间直方图(PSTH)。在实验2中,对15名成年人(27.4±8.1岁)在精确抓握和强力抓握过程中FDI和APB表面肌电图进行相干和互相关分析,以研究皮质脊髓驱动的时间组织。我们发现,在精确抓握和强力抓握过程中,11个恢复的运动单位的PSTH峰值起始时间(26.6±1.9对26.7±2.0毫秒,p = 0.75)、最大峰值(27.4±1.9对27.4±1.9毫秒,p = 1.0)或峰值持续时间(2.3±1.1对2.3±1.0毫秒,p = 0.75)没有显著差异。此外,在精确抓握(7.2±3.7毫秒)和强力抓握(7.9±3.1毫秒)过程中,相干性或同步峰值宽度也没有显著差异(p = 0.59)。TMS后单个运动单位的PSTH中引发的峰值持续时间较短,以及在精确抓握和强力抓握过程中自愿激活的运动单位的中枢同步峰值表明,直接皮质脊髓通路(皮质运动神经元系统)同样参与了这两项任务的控制。数据不支持间接通路对强力抓握有更大贡献的观点。