Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University , Düsseldorf 40225, Germany.
Mathematical Institute, Heinrich-Heine-University , Düsseldorf 40225, Germany.
J Proteome Res. 2018 Feb 2;17(2):879-890. doi: 10.1021/acs.jproteome.7b00684. Epub 2018 Jan 24.
Secretome analysis faces several challenges including detection of low abundant proteins and the discrimination of bona fide secreted proteins from false-positive identifications stemming from cell leakage or serum. Here, we developed a two-step secretomics approach and applied it to the analysis of secreted proteins of C2C12 skeletal muscle cells since the skeletal muscle has been identified as an important endocrine organ secreting myokines as signaling molecules. First, we compared culture supernatants with corresponding cell lysates by mass spectrometry-based proteomics and label-free quantification. We identified 672 protein groups as candidate secreted proteins due to their higher abundance in the secretome. On the basis of Brefeldin A mediated blocking of classical secretory processes, we estimated a sensitivity of >80% for the detection of classical secreted proteins for our experimental approach. In the second step, the peptide level information was integrated with UniProt based protein information employing the newly developed bioinformatics tool "Lysate and Secretome Peptide Feature Plotter" (LSPFP) to detect proteolytic protein processing events that might occur during secretion. Concerning the proof of concept, we identified truncations of the cytoplasmic part of the protein Plexin-B2. Our workflow provides an efficient combination of experimental workflow and data analysis to identify putative secreted and proteolytic processed proteins.
分泌组学分析面临着一些挑战,包括检测低丰度蛋白质,以及区分真正分泌的蛋白质与源自细胞渗漏或血清的假阳性鉴定。在这里,我们开发了一种两步分泌组学方法,并将其应用于 C2C12 骨骼肌细胞分泌蛋白的分析,因为骨骼肌已被确定为一种重要的内分泌器官,分泌肌因子作为信号分子。首先,我们通过基于质谱的蛋白质组学和无标记定量比较了培养上清液和相应的细胞裂解物。由于其在分泌组中的丰度较高,我们鉴定了 672 个蛋白质组作为候选分泌蛋白。基于布雷非德菌素 A 介导的阻断经典分泌过程,我们估计我们的实验方法对经典分泌蛋白的检测灵敏度>80%。在第二步中,肽水平信息与基于 UniProt 的蛋白质信息相结合,利用新开发的生物信息学工具“Lysate and Secretome Peptide Feature Plotter”(LSPFP)检测可能在分泌过程中发生的蛋白水解蛋白加工事件。关于概念验证,我们鉴定了蛋白 Plexin-B2 细胞质部分的截断。我们的工作流程提供了实验工作流程和数据分析的有效组合,以鉴定潜在的分泌和蛋白水解加工蛋白。