Suppr超能文献

比较、调整细胞系信息,使其在 CLO 和 EFO 之间保持一致。

Comparison, alignment, and synchronization of cell line information between CLO and EFO.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Samples, Phenotypes, and Ontologies Team, European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Hinxton, Cambridge, UK.

出版信息

BMC Bioinformatics. 2017 Dec 21;18(Suppl 17):557. doi: 10.1186/s12859-017-1979-z.

Abstract

BACKGROUND

The Experimental Factor Ontology (EFO) is an application ontology driven by experimental variables including cell lines to organize and describe the diverse experimental variables and data resided in the EMBL-EBI resources. The Cell Line Ontology (CLO) is an OBO community-based ontology that contains information of immortalized cell lines and relevant experimental components. EFO integrates and extends ontologies from the bio-ontology community to drive a number of practical applications. It is desirable that the community shares design patterns and therefore that EFO reuses the cell line representation from the Cell Line Ontology (CLO). There are, however, challenges to be addressed when developing a common ontology design pattern for representing cell lines in both EFO and CLO.

RESULTS

In this study, we developed a strategy to compare and map cell line terms between EFO and CLO. We examined Cellosaurus resources for EFO-CLO cross-references. Text labels of cell lines from both ontologies were verified by biological information axiomatized in each source. The study resulted in the identification 873 EFO-CLO aligned and 344 EFO unique immortalized permanent cell lines. All of these cell lines were updated to CLO and the cell line related information was merged. A design pattern that integrates EFO and CLO was also developed.

CONCLUSION

Our study compared, aligned, and synchronized the cell line information between CLO and EFO. The final updated CLO will be examined as the candidate ontology to import and replace eligible EFO cell line classes thereby supporting the interoperability in the bio-ontology domain. Our mapping pipeline illustrates the use of ontology in aiding biological data standardization and integration through the biological and semantics content of cell lines.

摘要

背景

实验因素本体(EFO)是一种应用本体,由包括细胞系在内的实验变量驱动,用于组织和描述 EMBL-EBI 资源中存在的各种实验变量和数据。细胞系本体(CLO)是一个基于 OBO 的社区本体,包含永生细胞系和相关实验成分的信息。EFO 整合并扩展了生物本体社区的本体,以驱动许多实际应用。社区希望共享设计模式,因此 EFO 会重用细胞系本体(CLO)中的细胞系表示形式。然而,在为 EFO 和 CLO 中的细胞系表示开发通用本体设计模式时,存在一些需要解决的挑战。

结果

在这项研究中,我们开发了一种策略来比较和映射 EFO 和 CLO 之间的细胞系术语。我们检查了 EFO-CLO 交叉引用的 Cellosaurus 资源。来自两个本体的细胞系的文本标签通过在每个来源中生物信息学公理进行了验证。该研究确定了 873 个 EFO-CLO 对齐和 344 个 EFO 独特的永生永久细胞系。所有这些细胞系都被更新到 CLO 中,并合并了细胞系相关信息。还开发了一种集成 EFO 和 CLO 的设计模式。

结论

我们的研究比较、对齐和同步了 CLO 和 EFO 之间的细胞系信息。最终更新的 CLO 将被视为候选本体,以导入和替换合格的 EFO 细胞系类,从而支持生物本体领域的互操作性。我们的映射管道说明了本体在通过细胞系的生物学和语义内容辅助生物数据标准化和集成方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1106/5763470/73117d6b27a6/12859_2017_1979_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验