Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Division of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
Sci Rep. 2018 Jan 11;8(1):63. doi: 10.1038/s41598-017-18213-0.
Phase transition materials are attractive from the viewpoints of basic science as well as practical applications. For example, optical phase transition materials are used for optical recording media. If a phase transition in condensed matter could be predicted or designed prior to synthesizing, the development of phase transition materials will be accelerated. Herein we show a logical strategy for designing a phase transition accompanying a thermal hysteresis loop. Combining first-principles phonon mode calculations and statistical thermodynamic calculations considering cooperative interaction predicts a charge-transfer phase transition between the A-B and A-B phases. As an example, we demonstrate the charge-transfer phase transition on rubidium manganese hexacyanoferrate. The predicted phase transition temperature and the thermal hysteresis loop agree well with the experimental results. This approach will contribute to the rapid development of yet undiscovered phase transition materials.
相变材料无论从基础科学还是实际应用的角度来看都很有吸引力。例如,光学相变材料用于光学记录介质。如果在合成之前能够预测或设计凝聚态物质的相变,那么相变材料的发展将会加快。在这里,我们展示了一种设计具有热滞回线的相变的逻辑策略。结合第一性原理声子模式计算和考虑协同相互作用的统计热力学计算,预测了 A-B 和 A-B 相之间的电荷转移相变。作为一个例子,我们在铷锰六氰合铁酸盐上演示了电荷转移相变。预测的相变温度和热滞回线与实验结果吻合良好。这种方法将有助于快速开发尚未发现的相变材料。