Nat Mater. 2010 Sep;9(9):721-4. doi: 10.1038/nmat2804. Epub 2010 Jul 11.
Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems have been explored as electrodes, which include rare-earth/transition-metal alloys, L1(0)-ordered (Co, Fe)-Pt alloys and Co/(Pd, Pt) multilayers. However, none of them so far satisfy high thermal stability at reduced dimension, low-current current-induced magnetization switching and high tunnel magnetoresistance ratio all at the same time. Here, we use interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane anisotropy. This approach requires no material other than those used in conventional in-plane-anisotropy MTJs. The perpendicular MTJs consisting of Ta/CoFeB/MgO/CoFeB/Ta show a high tunnel magnetoresistance ratio, over 120%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 microA.
具有垂直磁易轴的铁磁电极的磁性隧道结(MTJ)非常有趣,因为它们有可能实现下一代具有高热稳定性和低电流诱导磁化翻转临界电流的高密度非易失性存储器和逻辑芯片。为了获得垂直各向异性,已经探索了许多作为电极的材料体系,包括稀土/过渡金属合金、L1(0)有序(Co,Fe)-Pt 合金和 Co/(Pd, Pt)多层膜。然而,到目前为止,它们都没有满足在减小尺寸时的高热稳定性、低电流诱导磁化翻转和高隧道磁阻比的要求。在这里,我们通过使用 CoFeB-MgO 材料组合来利用铁磁电极与 MTJ 隧道势垒之间的界面垂直各向异性,该系统广泛用于产生具有面内各向异性的 MTJ 中的巨大隧道磁阻比。这种方法除了传统的面内各向异性 MTJ 中使用的材料外,不需要其他材料。由 Ta/CoFeB/MgO/CoFeB/Ta 组成的垂直 MTJ 表现出高隧道磁阻比,超过 120%,在低至 40nm 直径的尺寸下具有高热稳定性,以及低至 49μA 的切换电流。