School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
Nanoscale. 2018 Jan 25;10(4):2108-2114. doi: 10.1039/c7nr06932d.
The diverse forms of silicon carbides lead to versatile properties, but an auxetic allotrope at zero pressure has never been reported. Here, using first-principles calculations we propose a two-dimensional (2D) auxetic silicon carbide material, namely SiC siligraphene. The plausibility of the SiC siligraphene is verified by the low formation energy, positive phonon spectrum and high mechanical stability. The unique framework of sp carbon and sp silicon atoms leads to unusual in-plane negative Poisson's ratios and electronic properties superior to both graphene and silicene. SiC siligraphene possesses a natural band gap of 0.73 eV and a high carrier mobility. The theoretical mobility in the order of 10 cm V s for electrons along the [1[combining macron]10] direction is comparable to the hole mobility in black phosphorene, whereas the hole transport along the [110] direction is blocked. Both the electronic band structure and carrier mobility of the SiC siligraphene can be tuned by applying external strain. A possible synthetic route is also proposed. The exotic properties make SiC siligraphene a versatile and promising 2D material for applications in nanomechanics and nanoelectronics.
碳化硅的多种形式导致其具有多种特性,但在零压力下的具有负泊松比的结构从未被报道过。在此,我们通过第一性原理计算,提出了一种二维(2D)的具有负泊松比的碳化硅材料,即 SiC 硅烯。通过低形成能、正声谱和高机械稳定性验证了 SiC 硅烯的合理性。独特的 sp 碳和 sp 硅原子骨架导致其在平面内具有异常的负泊松比和优于石墨烯和硅烯的电子性质。SiC 硅烯具有 0.73eV 的天然带隙和高载流子迁移率。在 [1[combining macron]10] 方向上电子的理论迁移率约为 10cmV s,可与黑磷烯中的空穴迁移率相媲美,而空穴沿 [110] 方向的传输则被阻断。通过施加外部应变,可以调节 SiC 硅烯的能带结构和载流子迁移率。同时还提出了一种可能的合成途径。这种奇特的性质使得 SiC 硅烯成为一种多功能且有前途的 2D 材料,可应用于纳米力学和纳米电子学领域。