Division of Applied Chemistry, Faculty of Engineering, Hokkaido University , N13W8, Kita-ku, Sapporo 060-8628, Japan.
Biomacromolecules. 2018 Feb 12;19(2):662-671. doi: 10.1021/acs.biomac.7b01768. Epub 2018 Jan 22.
Biological polymer synthetic systems, which utilize no template molecules, normally synthesize random copolymers. We report an exception, a synthesis of block polyhydroxyalkanoates (PHAs) in an engineered Escherichia coli. Using an engineered PHA synthase, block copolymers poly[(R)-2-hydroxybutyrate(2HB)-b-(R)-3-hydroxybutyrate(3HB)] were produced in E. coli. The covalent linkage between P(2HB) and P(3HB) segments was verified with solvent fractionation and microphase separation. Notably, the block sequence was generated under the simultaneous consumption of two monomer precursors, indicating the existence of a rapid monomer switching mechanism during polymerization. Based on in vivo metabolic intermediate analysis and the relevant in vitro enzymatic activities, we propose a model in which the rapid intracellular 3HB-CoA fluctuation during polymer synthesis is a major factor in generating block sequences. The dynamic change of intracellular monomer levels is a novel regulatory principle of monomer sequences of biopolymers.
生物聚合物合成系统,不利用模板分子,通常合成无规共聚物。我们报告了一个例外,即在工程大肠杆菌中合成嵌段聚羟基烷酸酯 (PHA)。使用工程化的 PHA 合酶,在大肠杆菌中生产了嵌段共聚物聚[(R)-2-羟基丁酸酯(2HB)-b-(R)-3-羟基丁酸酯(3HB)]。通过溶剂分级和微相分离验证了 P(2HB)和 P(3HB)段之间的共价键连接。值得注意的是,在两种单体前体的同时消耗下生成了嵌段序列,表明聚合过程中存在快速单体转换机制。基于体内代谢中间产物分析和相关的体外酶活性,我们提出了一个模型,即在聚合物合成过程中,细胞内 3HB-CoA 的快速波动是产生嵌段序列的主要因素。细胞内单体水平的动态变化是生物聚合物单体序列的一种新的调控原理。