Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, Republic of Korea.
Appl Microbiol Biotechnol. 2012 Jan;93(1):273-83. doi: 10.1007/s00253-011-3530-x. Epub 2011 Aug 14.
We have previously reported in vivo biosynthesis of polylactic acid (PLA) and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] employing metabolically engineered Escherichia coli strains by the introduction of evolved Clostridium propionicum propionyl-CoA transferase (Pct(Cp)) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1(Ps6-19)). Using this in vivo PLA biosynthesis system, we presently report the biosynthesis of PHAs containing 2-hydroxybutyrate (2HB) monomer by direct fermentation of a metabolically engineered E. coli strain. The recombinant E. coli ldhA mutant XLdh strain expressing PhaC1( Ps6-19) and Pct(Cp) was developed and cultured in a chemically defined medium containing 20 g/L of glucose and varying concentrations of 2HB and 3HB. PHAs consisting of 2HB, 3HB, and a small fraction of lactate were synthesized. Their monomer compositions were dependent on the concentrations of 2HB and 3HB added to the culture medium. Even though the ldhA gene was completely deleted in the chromosome of E. coli, up to 6 mol% of lactate was found to be incorporated into the polymer depending on the culture condition. In order to synthesize PHAs containing 2HB monomer without feeding 2HB into the culture medium, a heterologous metabolic pathway for the generation of 2HB from glucose was constructed via the citramalate pathway, in which 2-ketobutyrate is synthesized directly from pyruvate and acetyl-CoA. Introduction of the Lactococcus lactis subsp. lactis Il1403 2HB dehydrogenase gene (panE) into E. coli allowed in vivo conversion of 2-ketobutyrate to 2HB. The metabolically engineered E. coli XLdh strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene successfully produced PHAs consisting of 2HB, 3HB, and a small fraction of lactate by varying the 3HB concentration in the culture medium. As the 3HB concentration in the medium increased the 3HB monomer fraction in the polymer, the polymer content increased. When Ralstonia eutropha phaAB genes were additionally expressed in this recombinant E. coli XLdh strain, P(2HB-co-3HB-co-LA) having small amounts of 2HB and LA monomers could also be produced from glucose as a sole carbon source. The metabolic engineering strategy reported here should be useful for the production of PHAs containing 2HB monomer.
我们之前曾报道过,通过引入进化的梭菌丙酰辅酶 A 转移酶(Pct(Cp))和假单胞菌 MBEL 6-19 聚羟基烷酸(PHA)合酶 1(PhaC1(Ps6-19)),在代谢工程大肠杆菌菌株中体内生物合成聚乳酸(PLA)和聚(3-羟基丁酸-co-乳酸)[P(3HB-co-LA)]。利用这种体内 PLA 生物合成系统,我们目前报告了通过代谢工程大肠杆菌菌株的直接发酵生产含有 2-羟基丁酸(2HB)单体的 PHAs。表达 PhaC1(Ps6-19)和 Pct(Cp)的重组大肠杆菌 ldhA 突变体 XLdh 菌株被开发并在含有 20g/L 葡萄糖和不同浓度 2HB 和 3HB 的化学定义培养基中培养。合成了由 2HB、3HB 和少量乳酸组成的 PHAs。它们的单体组成取决于添加到培养基中的 2HB 和 3HB 的浓度。尽管 ldhA 基因在大肠杆菌的染色体中完全缺失,但根据培养条件,发现多达 6mol%的乳酸被掺入聚合物中。为了在不向培养基中添加 2HB 的情况下合成含有 2HB 单体的 PHAs,通过柠檬酸途径构建了一条从葡萄糖生成 2HB 的异源代谢途径,其中 2-酮丁酸直接从丙酮酸和乙酰辅酶 A 合成。将乳球菌乳亚种 Il1403 2HB 脱氢酶基因(panE)引入大肠杆菌中,使体内能够将 2-酮丁酸转化为 2HB。表达 phaC1437、pct540、cimA3.7 和 leuBCD 基因以及乳球菌 Il1403 panE 基因的代谢工程大肠杆菌 XLdh 菌株通过改变培养基中 3HB 的浓度成功地生产出由 2HB、3HB 和少量乳酸组成的 PHAs。随着培养基中 3HB 浓度的增加,聚合物中 3HB 单体的比例增加,聚合物含量增加。当在该重组大肠杆菌 XLdh 菌株中进一步表达根瘤菌 phaAB 基因时,也可以从葡萄糖作为唯一碳源生产含有少量 2HB 和 LA 单体的 P(2HB-co-3HB-co-LA)。本文报道的代谢工程策略对于生产含有 2HB 单体的 PHAs 应该是有用的。