IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):51-59. doi: 10.1109/TNSRE.2017.2768500.
This paper presents a novel compressive sensing framework for recording brain dopamine levels with fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode. Termed compressive FSCV (C-FSCV), this approach compressively samples the measured total current in each FSCV scan and performs basic FSCV processing steps, e.g., background current averaging and subtraction, directly with compressed measurements. The resulting background-subtracted faradaic currents, which are shown to have a block-sparse representation in the discrete cosine transform domain, are next reconstructed from their compressively sampled counterparts with the block sparse Bayesian learning algorithm. Using a previously recorded dopamine dataset, consisting of electrically evoked signals recorded in the dorsal striatum of an anesthetized rat, the C-FSCV framework is shown to be efficacious in compressing and reconstructing brain dopamine dynamics and associated voltammograms with high fidelity (correlation coefficient, ), while achieving compression ratio, CR, values as high as ~ 5. Moreover, using another set of dopamine data recorded 5 minutes after administration of amphetamine (AMPH) to an ambulatory rat, C-FSCV once again compresses (CR = 5) and reconstructs the temporal pattern of dopamine release with high fidelity ( ), leading to a true-positive rate of 96.4% in detecting AMPH-induced dopamine transients.
本文提出了一种使用碳纤维微电极的快速扫描循环伏安法(FSCV)记录脑多巴胺水平的新型压缩感知框架。这种方法称为压缩 FSCV(C-FSCV),它以压缩的方式对每个 FSCV 扫描中的测量总电流进行采样,并直接使用压缩测量值执行基本的 FSCV 处理步骤,例如背景电流平均和扣除。在离散余弦变换域中,背景扣除的法拉第电流被证明具有块稀疏表示,接下来使用块稀疏贝叶斯学习算法从其压缩采样对应物中重建。使用先前记录的多巴胺数据集,该数据集由麻醉大鼠背侧纹状体中记录的电诱发信号组成,C-FSCV 框架被证明在压缩和重建大脑多巴胺动力学及其相关伏安图方面非常有效,具有高保真度(相关系数 ),同时实现高达约 5 的压缩比(CR)值。此外,使用另一组在安非他命(AMPH)给药后 5 分钟记录的多巴胺数据,C-FSCV 再次以高保真度()压缩(CR=5)和重建多巴胺释放的时间模式,导致检测 AMPH 诱导的多巴胺瞬变的真阳性率为 96.4%。