Suppr超能文献

尤恩斯抽样公式对任意适应度景观的推广。

Generalization of the Ewens sampling formula to arbitrary fitness landscapes.

作者信息

Khromov Pavel, Malliaris Constantin D, Morozov Alexandre V

机构信息

Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey, United States of America.

出版信息

PLoS One. 2018 Jan 11;13(1):e0190186. doi: 10.1371/journal.pone.0190186. eCollection 2018.

Abstract

In considering evolution of transcribed regions, regulatory sequences, and other genomic loci, we are often faced with a situation in which the number of allelic states greatly exceeds the size of the population. In this limit, the population eventually adopts a steady state characterized by mutation-selection-drift balance. Although new alleles continue to be explored through mutation, the statistics of the population, and in particular the probabilities of seeing specific allelic configurations in samples taken from the population, do not change with time. In the absence of selection, the probabilities of allelic configurations are given by the Ewens sampling formula, widely used in population genetics to detect deviations from neutrality. Here we develop an extension of this formula to arbitrary fitness distributions. Although our approach is general, we focus on the class of fitness landscapes, inspired by recent high-throughput genotype-phenotype maps, in which alleles can be in several distinct phenotypic states. This class of landscapes yields sampling probabilities that are computationally more tractable and can form a basis for inference of selection signatures from genomic data. Using an efficient numerical implementation of the sampling probabilities, we demonstrate that, for a sizable range of mutation rates and selection coefficients, the steady-state allelic diversity is not neutral. Therefore, it may be used to infer selection coefficients, as well as other evolutionary parameters from population data. We also carry out numerical simulations to challenge various approximations involved in deriving our sampling formulas, such as the infinite-allele limit and the "full connectivity" assumption inherent in the Ewens theory, in which each allele can mutate into any other allele. We find that, at least for the specific numerical examples studied, our theory remains sufficiently accurate even if these assumptions are relaxed. Thus our framework establishes both theoretical and practical foundations for inferring selection signatures from population-level genomic sequence samples.

摘要

在考虑转录区域、调控序列和其他基因组位点的进化时,我们常常面临等位基因状态的数量大大超过种群规模的情况。在这种情况下,种群最终会达到一种以突变 - 选择 - 漂变平衡为特征的稳态。尽管新的等位基因会通过突变不断产生,但种群的统计特征,特别是从种群中抽取的样本中出现特定等位基因构型的概率,不会随时间变化。在没有选择的情况下,等位基因构型的概率由Ewens抽样公式给出,该公式在群体遗传学中广泛用于检测偏离中性的情况。在这里,我们将这个公式扩展到任意适合度分布。虽然我们的方法具有通用性,但我们关注的是一类受近期高通量基因型 - 表型图谱启发的适合度景观,其中等位基因可以处于几种不同的表型状态。这类景观产生的抽样概率在计算上更易于处理,并且可以作为从基因组数据推断选择特征的基础。通过对抽样概率的高效数值实现,我们证明,对于相当大范围内的突变率和选择系数,稳态等位基因多样性并非中性。因此,它可用于从种群数据推断选择系数以及其他进化参数。我们还进行了数值模拟,以检验推导我们的抽样公式时所涉及的各种近似,例如无限等位基因极限以及Ewens理论中固有的“完全连通性”假设,即在该假设中每个等位基因都可以突变为任何其他等位基因。我们发现,至少对于所研究的特定数值示例,即使放宽这些假设,我们的理论仍然足够准确。因此,我们的框架为从种群水平的基因组序列样本推断选择特征奠定了理论和实践基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc2/5764269/f66882cb7808/pone.0190186.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验