Suppr超能文献

通过呼吸组学对慢性气道疾病进行临床和炎症表型分析,与诊断标签无关。

Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label.

机构信息

Dept of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands

Dept of Respiratory Medicine, Academic Medical Centre, Amsterdam, The Netherlands.

出版信息

Eur Respir J. 2018 Jan 11;51(1). doi: 10.1183/13993003.01817-2017. Print 2018 Jan.

Abstract

Asthma and chronic obstructive pulmonary disease (COPD) are complex and overlapping diseases that include inflammatory phenotypes. Novel anti-eosinophilic/anti-neutrophilic strategies demand rapid inflammatory phenotyping, which might be accessible from exhaled breath.Our objective was to capture clinical/inflammatory phenotypes in patients with chronic airway disease using an electronic nose (eNose) in a training and validation set.This was a multicentre cross-sectional study in which exhaled breath from asthma and COPD patients (n=435; training n=321 and validation n=114) was analysed using eNose technology. Data analysis involved signal processing and statistics based on principal component analysis followed by unsupervised cluster analysis and supervised linear regression.Clustering based on eNose resulted in five significant combined asthma and COPD clusters that differed regarding ethnicity (p=0.01), systemic eosinophilia (p=0.02) and neutrophilia (p=0.03), body mass index (p=0.04), exhaled nitric oxide fraction (p<0.01), atopy (p<0.01) and exacerbation rate (p<0.01). Significant regression models were found for the prediction of eosinophilic (R=0.581) and neutrophilic (R=0.409) blood counts based on eNose. Similar clusters and regression results were obtained in the validation set.Phenotyping a combined sample of asthma and COPD patients using eNose provides validated clusters that are not determined by diagnosis, but rather by clinical/inflammatory characteristics. eNose identified systemic neutrophilia and/or eosinophilia in a dose-dependent manner.

摘要

哮喘和慢性阻塞性肺疾病(COPD)是复杂且重叠的疾病,包括炎症表型。新型抗嗜酸性粒细胞/抗中性粒细胞策略需要快速炎症表型分析,这可能可以从呼气中获得。我们的目的是使用电子鼻(eNose)在训练集和验证集中捕获慢性气道疾病患者的临床/炎症表型。这是一项多中心横断面研究,其中分析了哮喘和 COPD 患者(n=435;训练集 n=321,验证集 n=114)的呼气,使用 eNose 技术。数据分析涉及基于主成分分析的信号处理和统计,然后是无监督聚类分析和有监督线性回归。基于 eNose 的聚类导致五个显著的哮喘和 COPD 联合聚类,这些聚类在种族(p=0.01)、全身嗜酸性粒细胞增多症(p=0.02)和中性粒细胞增多症(p=0.03)、体重指数(p=0.04)、呼气一氧化氮分数(p<0.01)、特应性(p<0.01)和恶化率(p<0.01)方面存在差异。发现了基于 eNose 预测嗜酸性粒细胞(R=0.581)和中性粒细胞(R=0.409)计数的显著回归模型。在验证集中也获得了类似的聚类和回归结果。使用 eNose 对哮喘和 COPD 患者的综合样本进行表型分析提供了经过验证的聚类,这些聚类不是由诊断决定的,而是由临床/炎症特征决定的。eNose 以剂量依赖性方式识别全身中性粒细胞增多症和/或嗜酸性粒细胞增多症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验