Arnold Fabian, Warmuth Jonas, Michiardi Matteo, Fikáček Jan, Bianchi Marco, Hu Jin, Mao Zhiqiang, Miwa Jill, Raj Singh Udai, Bremholm Martin, Wiesendanger Roland, Honolka Jan, Wehling Tim, Wiebe Jens, Hofmann Philip
Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark.
J Phys Condens Matter. 2018 Feb 14;30(6):065502. doi: 10.1088/1361-648X/aaa43e.
The electronic structure of thin films of FeTe grown on BiTe is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk FeTe taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on BiTe in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film's electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film's high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.
利用角分辨光电子能谱、扫描隧道显微镜和第一性原理计算方法,对生长在BiTe上的FeTe薄膜的电子结构进行了研究。作为对比,还给出了在相同实验条件下解理的块状FeTe的数据。由于衬底和薄膜的对称性,FeTe薄膜在BiTe上以三个畴生长,旋转角度分别为0°、120°和240°。这导致了来自这些畴的光电子发射强度的叠加,使分析变得复杂。然而,通过结合块状和薄膜数据,可以部分地分辨出三个畴的贡献。我们发现薄膜和块状电子结构之间有密切的相似性,并且在假设块状材料的p型掺杂位移为65 meV和重整化因子约为2的情况下,与第一性原理计算总体上吻合良好。通过跟踪薄膜生长时衬底电子结构的变化,我们发现有迹象表明电子从FeTe薄膜转移到了衬底上。当在表面上注入碱金属原子时,未观察到薄膜电子结构或掺杂的显著变化。这归因于薄膜在费米能处的高态密度。这种行为也得到了从头算计算的支持。