Qin Hailang, Chen Xiaobin, Guo Bin, Pan Tianluo, Zhang Meng, Xu Bochao, Chen Junshu, He Hongtao, Mei Jiawei, Chen Weiqiang, Ye Fei, Wang Gan
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
School of Science and State Key Laboratory on Tunable Laser Technology and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, China.
Nano Lett. 2021 Feb 10;21(3):1327-1334. doi: 10.1021/acs.nanolett.0c04048. Epub 2021 Jan 29.
In this work, we demonstrate that the nonsuperconducting single-layer FeTe can become superconducting when its structure is properly tuned by epitaxially growing it on BiTe thin films. The properties of the single-layer FeTe deviate strongly from its bulk counterpart, as evidenced by the emergence of a large superconductivity gap (3.3 meV) and an apparent 8 × 2 superlattice (SL). Our first-principles calculations indicate that the 8 × 2 SL and the emergence of the novel superconducting phase are essentially the result of the structural change in FeTe due to the presence of the underlying BiTe layer. The structural change in FeTe likely suppresses the antiferromagnetic order in the FeTe and leads to superconductivity. Our work clearly demonstrates that moiré pattern engineering in a heterostructure is a reachable dimension for investigating novel materials and material properties.
在这项工作中,我们证明了非超导的单层FeTe在通过在BiTe薄膜上外延生长对其结构进行适当调整时可以变成超导的。单层FeTe的性质与其块状对应物有很大偏差,这由一个大的超导能隙(3.3毫电子伏特)和明显的8×2超晶格(SL)的出现所证明。我们的第一性原理计算表明,8×2超晶格和新型超导相的出现本质上是由于底层BiTe层的存在导致FeTe结构变化的结果。FeTe中的结构变化可能抑制了FeTe中的反铁磁序并导致了超导性。我们的工作清楚地表明,异质结构中的莫尔图案工程是研究新型材料和材料性质的一个可实现的维度。