Suppr超能文献

通过生物信息学分析鉴定亨廷顿病中的差异表达基因和调控关系。

Identification of differentially expressed genes and regulatory relationships in Huntington's disease by bioinformatics analysis.

机构信息

Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China.

出版信息

Mol Med Rep. 2018 Mar;17(3):4317-4326. doi: 10.3892/mmr.2018.8410. Epub 2018 Jan 9.

Abstract

Huntington's disease (HD) is an inherited, progressive neurodegenerative disease caused by a CAG expansion in the huntingtin (HTT) gene; various dysfunctions of biological processes in HD have been proposed. However, at present the exact pathogenesis of HD is not fully understood. The present study aimed to explore the pathogenesis of HD using a computational bioinformatics analysis of gene expression. GSE11358 was downloaded from the Gene Expression Omnibus andthe differentially expressed genes (DEGs) in the mutant HTT knock‑in cell model STHdhQ111/Q111 were predicted. DEGs between the HD and control samples were screened using the limma package in R. Functional and pathway enrichment analyses were conducted using the database for annotation, visualization and integrated discovery software. A protein‑protein interaction (PPI) network was established by the search tool for the retrieval of interacting genes and visualized by Cytoscape. Module analysis of the PPI network was performed utilizing MCODE. A total of 471 DEGs were identified, including ribonuclease A family member 4 (RNASE4). In addition, 41 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways, as well as several significant Gene Ontology terms (including cytokine‑cytokine receptor interaction and cytosolic DNA‑sensing) were identified. A total of 18 significant modules were identified from the PPI network. Furthermore, a novel transcriptional regulatory relationship was identified, namely signal transducer and activator of transcription 3 (STAT3), which is regulated by miRNA‑124 in HD. In conclusion, deregulation of 18 critical genes may contribute to the occurrence of HD. RNASE4, STAT3, and miRNA‑124 may have a regulatory association with the pathological mechanisms in HD.

摘要

亨廷顿病 (HD) 是一种由亨廷顿 (HTT) 基因中 CAG 扩展引起的遗传性、进行性神经退行性疾病; 已经提出了 HD 中各种生物过程的功能障碍。然而,目前 HD 的确切发病机制尚未完全了解。本研究旨在通过基因表达的计算生物信息学分析来探讨 HD 的发病机制。从基因表达综合数据库中下载 GSE11358,并预测突变 HTT 敲入细胞模型 STHdhQ111/Q111 中的差异表达基因 (DEGs)。使用 R 中的 limma 包筛选 HD 和对照样本之间的 DEGs。使用数据库进行注释、可视化和综合发现软件进行功能和途径富集分析。通过搜索工具检索相互作用基因并使用 Cytoscape 可视化建立蛋白质 - 蛋白质相互作用 (PPI) 网络。通过 MCODE 对 PPI 网络进行模块分析。共鉴定出 471 个 DEG,包括核糖核酸酶 A 家族成员 4 (RNASE4)。此外,还鉴定出 41 个显著富集的京都基因与基因组百科全书通路,以及几个显著的基因本体论术语 (包括细胞因子 - 细胞因子受体相互作用和胞质 DNA 感应)。从 PPI 网络中总共鉴定出 18 个显著模块。此外,还鉴定出一种新的转录调控关系,即信号转导和转录激活因子 3 (STAT3),其在 HD 中受 miRNA-124 调节。综上所述,18 个关键基因的失调可能导致 HD 的发生。RNASE4、STAT3 和 miRNA-124 可能与 HD 中的病理机制存在调节关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c452/5802203/3031e9405892/MMR-17-03-4317-g00.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验