Department of Neurophysiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2020293118.
Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.
亨廷顿病(HD)中的转录失调导致纹状体神经元的功能缺陷。在这里,我们在体外 HD 模型中进行了 Patch-seq(Patch-seq),以研究突变 Huntingtin(Htt)对单个纹状体神经元中突触传递和基因转录的影响。我们发现,突变体的表达以细胞自主性方式降低了纹状体神经元的突触输出,并鉴定了一些基因,其失调与突变 Htt 神经元的生理缺陷相关。支持表观遗传机制在 HD 病理生理学中的关键作用,我们发现抑制组蛋白去乙酰化酶 1/3 的活性可纠正几种功能和形态缺陷,并减轻突变 Htt 神经元中的异常转录谱。通过这项研究,我们证明了 Patch-seq 技术既可以应用于更好地理解复杂神经疾病的分子机制,也可以为该疾病的治疗药物筛选提供一个平台。