Suppr超能文献

采用多频率和多光斑尺寸时域热反射法研究高质量 CVD 金刚石膜中的生长诱导各向异性热输运

Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

机构信息

Materials Science and Engineering, University of California at Los Angeles , Los Angeles, California 91355, United States.

Element Six Technologies , Santa Clara, California 95054, United States.

出版信息

ACS Appl Mater Interfaces. 2018 Feb 7;10(5):4808-4815. doi: 10.1021/acsami.7b16812. Epub 2018 Jan 25.

Abstract

The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved understanding of thermal conductivity inhomogeneity in high-quality CVD polycrystalline diamond that is important for applications in the thermal management of high-power electronics.

摘要

氮化镓高电子迁移率晶体管的最大输出功率受到局部自热引起的高通道温度的限制,这会降低器件的性能和可靠性。化学气相沉积(CVD)金刚石是一种很有前途的材料,可以帮助提取热量并将高功率电子设备的峰值工作温度降到最低。由于其不均匀的结构,CVD 金刚石的热导率沿生长方向变化,并且在平面内和平面外方向之间可能不同,导致复杂的三维(3D)分布。根据金刚石的厚度和电子器件的尺寸,这种 3D 分布可能会影响 CVD 金刚石在器件热管理中的效果。在这项工作中,使用时域热反射法来测量从成核面开始的 11.8μm 厚高质量 CVD 金刚石膜的各向异性热导率。从大于膜厚度的光斑直径开始,在从 1.2MHz 到 11.6MHz 的各种调制频率下进行测量,以调整热穿透深度并采样热导率的变化。然后,我们通过创建一个具有膜分为十个子层的模型并假设每个子层具有各向同性热导率来分析数据。由此,我们观察到该膜的深度相关热导率的二维梯度。当距离成核界面仅达到 3μm 时,局部热导率超过 1000W/(mK)。此外,通过在多个频率下用较小的光斑尺寸测量相同的区域,提取出平面内和平面外热导率。通过使用多个光斑尺寸和调制频率,通过将实验数据拟合到热模型中,实验获得了 CVD 金刚石膜的 3D 各向异性热导率。这项工作提供了对高质量 CVD 多晶金刚石热导率各向异性的更好理解,这对于高功率电子设备热管理中的应用非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验