Jiang Puqing, Qian Xin, Yang Ronggui
Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA.
Rev Sci Instrum. 2017 Jul;88(7):074901. doi: 10.1063/1.4991715.
It is challenging to characterize thermal conductivity of materials with strong anisotropy. In this work, we extend the time-domain thermoreflectance (TDTR) method with a variable spot size approach to simultaneously measure the in-plane (Kr) and the through-plane (Kz) thermal conductivity of materials with strong anisotropy. We first determine Kz from the measurement using a larger spot size, when the heat flow is mainly one-dimensional along the through-plane direction, and the measured signals are only sensitive to Kz. We then extract the in-plane thermal conductivity Kr from a second measurement using the same modulation frequency but with a smaller spot size, when the heat flow becomes three-dimensional, and the signal is sensitive to both Kr and Kz. By choosing the same modulation frequency for the two sets of measurements, we can avoid potential artifacts introduced by the frequency-dependent Kz, which we have found to be non-negligible, especially for some two-dimensional layered materials like MoS2. After careful evaluation of the sensitivity of a series of hypothetical samples, we provided guidelines on choosing the most appropriate laser spot size and modulation frequency that yield the smallest uncertainty, and established a criterion for the range of thermal conductivity that can be measured reliably using our proposed variable spot size TDTR approach. We have demonstrated this variable spot size TDTR approach on samples with a wide range of in-plane thermal conductivity, including fused silica, rutile titania (TiO2 [001]), zinc oxide (ZnO [0001]), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), and highly ordered pyrolytic graphite.
表征具有强各向异性的材料的热导率具有挑战性。在这项工作中,我们采用可变光斑尺寸方法扩展了时域热反射(TDTR)方法,以同时测量具有强各向异性的材料的面内热导率(Kr)和垂直面热导率(Kz)。我们首先使用较大光斑尺寸进行测量来确定Kz,此时热流主要沿垂直面方向呈一维状态,且测量信号仅对Kz敏感。然后,当热流变为三维时,我们使用相同的调制频率但较小光斑尺寸进行第二次测量来提取面内热导率Kr,此时信号对Kr和Kz均敏感。通过为两组测量选择相同的调制频率,我们可以避免由频率相关的Kz引入的潜在伪像,我们发现这种伪像不可忽略,特别是对于一些二维层状材料,如MoS2。在仔细评估了一系列假设样品的灵敏度后,我们提供了关于选择产生最小不确定性的最合适激光光斑尺寸和调制频率的指导方针,并建立了一个标准,用于确定使用我们提出的可变光斑尺寸TDTR方法能够可靠测量的热导率范围。我们已经在具有广泛面内热导率的样品上演示了这种可变光斑尺寸TDTR方法,这些样品包括熔融石英、金红石二氧化钛(TiO2 [001])、氧化锌(ZnO [0001])、二硫化钼(MoS2)、六方氮化硼(h-BN)和高度有序热解石墨。