Delaware Environmental Institute, University of Delaware , Newark, Delaware 19716-7310, United States.
Department of Earth & Environmental Science, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6316, United States.
Environ Sci Technol. 2018 Feb 6;52(3):1036-1044. doi: 10.1021/acs.est.7b04953. Epub 2018 Jan 25.
Iron (Fe)-bearing mineral phases contribute disproportionately to adsorption of soil organic matter (SOM) due to their elevated chemical reactivity and specific surface area (SSA). However, the spectrum of Fe solid-phase speciation present in oxidation-reduction-active soils challenges analysis of SOM-mineral interactions and may induce differential molecular fractionation of dissolved organic matter (DOM). This work used paired selective dissolution experiments and batch sorption of postextraction residues to (1) quantify the contributions of Fe-bearing minerals of varying crystallinity to DOM sorption, and (2) characterize molecular fractionation using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). A substantial proportion of soil SSA was derived from extracted Fe-bearing phases, and FT-ICR-MS analysis of extracted DOM revealed distinct chemical signatures across Fe-OM associations. Sorbed carbon (C) was highly correlated with Fe concentrations, suggesting that Fe-bearing phases are strong drivers of sorption in these soils. Molecular fractionation was observed across treatments, particularly those dominated by short-range-order (SRO) mineral phases, which preferentially adsorbed aromatic and lignin-like formulas, and higher-crystallinity phases, associated with aliphatic DOM. These findings suggest Fe speciation-mediated complexation acts as a physicochemical filter of DOM moving through the critical zone, an important observation as predicted changes in precipitation may dynamically alter Fe crystallinity and C stability.
含铁矿物相由于其较高的化学反应性和比表面积(SSA),对土壤有机质(SOM)的吸附作用不成比例。然而,在氧化还原活性土壤中存在的一系列铁固相形态,对 SOM-矿物相互作用的分析提出了挑战,并可能导致溶解有机质(DOM)的差异分子分馏。本研究采用配对选择性溶解实验和提取后残渣的批量吸附实验,(1)定量研究不同结晶度含铁矿物对 DOM 吸附的贡献,以及(2)利用傅里叶变换离子回旋共振质谱(FT-ICR-MS)对分子分馏进行表征。大量土壤 SSA 来自于提取的含铁相,并且提取 DOM 的 FT-ICR-MS 分析揭示了 Fe-OM 关联之间的明显化学特征。吸附的碳(C)与铁浓度高度相关,表明含铁相是这些土壤中吸附的主要驱动因素。在整个处理过程中观察到了分子分馏,特别是那些以短程有序(SRO)矿物相为主的处理,它们优先吸附芳香族和木质素样公式,以及与脂肪族 DOM 相关的高结晶度相。这些发现表明,Fe 形态介导的络合作用是 DOM 通过关键带的物理化学过滤器,这是一个重要的观察结果,因为预计降水的变化可能会动态改变 Fe 结晶度和 C 稳定性。