Department of Genetics, University of Madras, Dr.ALM.PG.IBMS, Taramani, Chennai, Tamil Nadu, 600113, India.
Biomed Pharmacother. 2018 Mar;99:101-112. doi: 10.1016/j.biopha.2018.01.032. Epub 2018 Jan 9.
Hypoxia is known to be a major player during pathological angiogenesis and adenosine as a negative feedback signaling to maintain oxygen delivery in pathological ischemic condition. We mimicked hypoxic condition and studied angiogenesis by inducing adenosine receptors using forskolin, a plant compound and NECA analogue of adenosine using zebrafish model. Vascular endothelial growth factor (VEGF) is known to play a key role during pathological angiogenesis and regulated by the factors HIF1a under hypoxic condition and recently Notch is proposed to play a negative feedback loop mechanism along with VEGF signaling but the role of adenosine receptor during the process is not known. We evaluated the mRNA expression of adenosine receptors (A1, A2a.1, A2a.2, A2b), HIF1a, VEGF A, VEGF R2, NRP1a, NOTCH 1a and DLL4 and the phenotypic variations of zebrafish embryos when treated with DAPT, γ-secretase inhibitor of Notch in addition to treating the embryos with SU5416, a VEGF receptor inhibitor. Upregulation of adenosine receptors (A1, A2a.1, A2a.2, A2b), HIF1a, VEGF A, VEGF R2, NRP1a, NOTCH1a and DLL4 was observed embryos were when treated with forskolin and NECA could possibly mimic hypoxic condition. Hatching and heart rate also increased with NECA and forskolin. SU5416 showed decreases in blood vessel formation and decreased adenosine receptors, VEGF, VEGFR2, HIF1a and NRP1a expression and DAPT, exhibited decreases in blood vessels and decreased NRP1a, NOTCH1a, DLL4 expression. These embryos developed with poor vasculature, tail bending, abnormal phenotypes and developmental delay. Forskolin treated with inhibitors showed increased blood vessel formation, normal phenotype, development and adenosine receptors (A1, A2a.1, A2a.2, A2b), HIF1a, VEGF A, VEGF R2, NRP1a, NOTCH 1a and DLL4 gene expression suggesting that adenosine mediated Notch and VEGF could play an important role during development and angiogenesis. Targeting VEGF and Notch signaling with adenosine receptors inhibitors which might have a therapeutic significance during hypoxia and abnormal angiogenesis.
缺氧被认为是病理性血管生成中的主要因素,而腺苷则作为一种负反馈信号,在病理性缺血状态下维持氧的输送。我们使用植物化合物 forskolin诱导腺苷受体,模拟缺氧条件,并使用斑马鱼模型研究血管生成。已知血管内皮生长因子 (VEGF) 在病理性血管生成中起着关键作用,并受缺氧条件下 HIF1a 和 Notch 等因素的调节,最近提出 Notch 与 VEGF 信号一起发挥负反馈回路机制,但腺苷受体在该过程中的作用尚不清楚。我们评估了腺苷受体 (A1、A2a.1、A2a.2、A2b)、HIF1a、VEGF A、VEGF R2、NRP1a、NOTCH 1a 和 DLL4 的 mRNA 表达,以及用 DAPT(Notch 的 γ-分泌酶抑制剂)和 SU5416(VEGF 受体抑制剂)处理斑马鱼胚胎时的表型变化。用 forskolin 和 NECA 处理胚胎时,观察到腺苷受体 (A1、A2a.1、A2a.2、A2b)、HIF1a、VEGF A、VEGF R2、NRP1a、NOTCH1a 和 DLL4 的上调,可能模拟缺氧条件。NECA 和 forskolin 还增加了孵化和心率。SU5416 显示血管生成减少,腺苷受体、VEGF、VEGFR2、HIF1a 和 NRP1a 表达减少,DAPT 显示血管减少,NRP1a、NOTCH1a 和 DLL4 表达减少。这些胚胎发育时血管生成不良,尾巴弯曲,表现异常,发育迟缓。用抑制剂处理的 forskolin 显示血管生成增加,表型正常,发育和腺苷受体 (A1、A2a.1、A2a.2、A2b)、HIF1a、VEGF A、VEGF R2、NRP1a、NOTCH 1a 和 DLL4 基因表达增加,表明腺苷介导的 Notch 和 VEGF 在发育和血管生成中可能发挥重要作用。针对腺苷受体抑制剂的 VEGF 和 Notch 信号可能在缺氧和异常血管生成中具有治疗意义。