Suppr超能文献

基于网络上三阶基元逼近的传染病模型。

The epidemic model based on the approximation for third-order motifs on networks.

机构信息

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, PR China; Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Taiyuan 030006, PR China.

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, PR China.

出版信息

Math Biosci. 2018 Mar;297:12-26. doi: 10.1016/j.mbs.2018.01.002. Epub 2018 Jan 9.

Abstract

The spread of an infectious disease may depend on the structure of the network. To study the influence of the structure parameters of the network on the spread of the epidemic, we need to put these parameters into the epidemic model. The method of moment closure introduces structure parameters into the epidemic model. In this paper, we present a new moment closure epidemic model based on the approximation of third-order motifs in networks. The order of a motif defined in this paper is determined by the number of the edges in the motif, rather than by the number of nodes in the motif as defined in the literature. We provide a general approach to deriving a set of ordinary differential equations that describes, to a high degree of accuracy, the spread of an infectious disease. Using this method, we establish a susceptible-infected-recovered (SIR) model. We then calculate the basic reproduction number of the SIR model, and find that it decreases as the clustering coefficient increases. Finally, we perform some simulations using the proposed model to study the influence of the clustering coefficient on the final epidemic size, the maximum number of infected, and the peak time of the disease. The numerical simulations based on the SIR model in this paper fit the stochastic simulations based on the Monte Carlo method well at different levels of clustering. Our results show that the clustering coefficient poses impediments to the spread of disease under an SIR model.

摘要

传染病的传播可能取决于网络的结构。为了研究网络结构参数对传染病传播的影响,我们需要将这些参数引入到传染病模型中。矩闭合方法将结构参数引入到传染病模型中。本文提出了一种基于网络中三阶基元逼近的新矩闭合传染病模型。本文定义的基元的阶数是由基元中的边数决定的,而不是由文献中定义的基元中的节点数决定的。我们提供了一种一般的方法来推导出一组常微分方程,这些方程可以高度准确地描述传染病的传播。利用这种方法,我们建立了一个易感染-感染-恢复(SIR)模型。然后,我们计算了 SIR 模型的基本再生数,并发现它随着聚类系数的增加而减小。最后,我们使用所提出的模型进行了一些模拟,以研究聚类系数对最终传染病规模、最大感染人数和疾病高峰时间的影响。本文中基于 SIR 模型的数值模拟在不同聚类水平上与基于蒙特卡罗方法的随机模拟吻合得很好。我们的结果表明,聚类系数在 SIR 模型下对疾病的传播构成了障碍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验